The Bully Mnemonic: Difference between revisions

From PhysWiki
Tag: Reverted
No edit summary
 
(618 intermediate revisions by the same user not shown)
Line 1: Line 1:
= What is the Bully Mnemonic Device? =
{{BullyMnemonic}}


A [https://en.wikipedia.org/wiki/Mnemonic mnemonic device] (or memory device) is a technique for retaining information.
[[Bully Metric]]


The '''Bully Mnemonic''' is a technique for remembering the exact number of seconds that occur in Earth's [https://en.wikipedia.org/wiki/Sidereal_year sidereal year], and the approximate relationship that exists between Earth's sidereal year, Earth's [https://en.wikipedia.org/wiki/Great_Year Great Year], and the Solar System's [https://en.wikipedia.org/wiki/Galactic_year Galactic year].
The '''Bully Mnemonic''' is a technique for remembering the exact (eight digits) number of seconds that occur in Earth's [https://en.wikipedia.org/wiki/Sidereal_year sidereal year] and [https://en.wikipedia.org/wiki/Tropical_year tropical year]; a good approximation (four digits) of the Earth's [https://en.wikipedia.org/wiki/Great_Year Great Year]; and a rough approximation of the Solar System's [https://en.wikipedia.org/wiki/Galactic_year galactic year].


== The Bully Mnemonic Step 1 ==
The following relationships are encoded in the Bully Mnemonic:


The first step is to write out the first five digits:
<math display="block"> {1 \, Sidereal \, Year} = {31,558,150 \, Seconds} </math>


<math|big=1|display="block"> \begin{matrix} 1 & 2 & 3 & 4 & 5 \end{matrix}</math>
<math display="block"> {1 \, Tropical \, Year} = {31,556,926 \, Seconds} </math>


== The Bully Mnemonic Step 2 ==
<math display="block"> 1 \, Great \, Year \approx 25,824 \, Sidereal \, Years \approx 25,825 \, Tropical \, Years </math>


Select the odd digits:
<math display="block">{1 \, Galactic \, Year} \approx 213,417,800 \, Tropical \, Years </math>


<math display="block"> 1 2 3 4 5</math>


<math display="block">({10330} \cdot {0.40})(\frac{10330}{0.40})({10330} \cdot {3055}) = (4132) \cdot (25825) \cdot (31558150) </math>
A few additional approximations (four digits) can be obtained from values used in the Bully Mnemonic.  These include an approximate relationship of the speed of light to the [https://en.wikipedia.org/wiki/Earth_radius Earth's radius] (r ≈ [https://www.google.com/search?q=c+*+3.055+s+%2F+sqrt%282*10330%29 6371]), Schwarzschild radius (R), [https://en.wikipedia.org/wiki/Standard_gravitational_parameter standard gravitational parameter] (μ = MG ≈ [https://www.google.com/search?q=c%5E3+*+0.03055+s+%2F%282+*+1033000000%29 3.984e14]), and a typical [https://en.wikipedia.org/wiki/Gravity_of_Earth gravitational acceleration] on earth's surface (g ≈ [https://www.google.com/search?q=c+%2F+%2830550000+s%29 9.813] ).
 
<math display="block"> r_{earth} \approx {10^{-3}} \times c \times  \frac{{\color{Red} 3} 0  {\color{Red} 55}\,s}{\sqrt{{\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33}  0}}} = 6371 \, km</math>
 
<math display="block"> R_{earth} = \frac{2 \times GM_{earth}}{c^{2}} \approx {10^{-10}} \times c \times \frac{{\color{Red} 3} 0  {\color{Red} 55}\,s}{{{\color{Red} 1} 0  {\color{Red} 33}  0}} \approx {8.866 \, mm} </math>
 
<math display="block"> {\mu}_{earth} = GM_{earth} \approx {10^{-10}} \times c^{3} \times \frac{{\color{Red} 3} 0  {\color{Red} 55}\,s}{{\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33}  0}} \approx {398,400,000,000,000\, \frac{m^{3}}{s^2}} </math>
 
<math display="block">g_{earth} = \frac{{\mu}_{earth}}{{r_{earth}}^{2}} \approx {10^{-4}} \times c \times \frac{1}{ {\color{Red} 3} 0  {\color{Red} 55} \, s} \approx {9.813 \, \frac{m}{s^{2}}} </math>
 
 
= Bully Mnemonic Steps =
 
== Initial Definitions ==
 
=== Step 1 ===
 
The first step is to write down the first five digits:
 
<math display="block"> \begin{matrix} 1 & 2 & 3 & 4 & 5 \end{matrix}</math>
 
=== Step 2 ===
 
The second step is to select odd digits and intersperse them with zeros to form integers a) and b) as shown below:
(important to remember that the first integer ends with 33 followed by a 0, whereas the second integer ends with 55 with no trailing 0)
 
<math display="block"> \begin{matrix} {\color{Red} 1} & \scriptstyle\text{2} & {\color{Red} 3} & \scriptstyle\text{4} & {\color{Red} 5} \end{matrix} </math>
 
<math display="block"> a) \, {\color{Red} 1} 0  {\color{Red} 33}  0 </math>
<math display="block"> b) \, {\color{Red} 3} 0  {\color{Red} 55}</math>
 
=== Step 3 ===
 
The third step is to select even digits and define numbers c) and d) as shown below:
 
<math display="block"> \begin{matrix} \scriptstyle\text{1} & {\color{Red} 2} &  \scriptstyle\text{3} & {\color{Red} 4} & \scriptstyle\text{5} \end{matrix} </math>
 
<math display="block"> c) \, {\color{Red} 2} </math>
<math display="block"> d) \, 0. {\color{Red} 4} 0 </math>
 
== Sidereal & Tropical Years ==
 
=== Step 4 ===
 
Multiply integers a) and b) from Step 2 to get the total number of seconds in a sidereal year.
 
<math display="block"> {\color{Red} 1} 0 {\color{Red} 33} 0 \times {\color{Red} 3} 0 {\color{Red} 55} = 31558150 = \frac{1 \, Sidereal \, Year}{1 \, Second} </math>
 
Using Long Multiplication:
        3055
×    10330
————————————
    3055
    0000
      9165
      9165
+      0000
————————————
    31558150
 
=== Step 5 ===
 
The tropical year has a slightly shorter duration than the sidereal year. The approximate number of seconds in a tropical year is obtained by reducing integer a) by amount d), and then multiplying by b).
 
<math display="block"> ({\color{Red} 1} 0  {\color{Red} 33} 0 - 0. {\color{Red} 4} 0)  \times {\color{Red} 3} 0  {\color{Red} 55}  = 31556928 \approx \frac{1 \, Tropical \, Year}{1 \, Second} </math>
 
The exact number of seconds in a tropical year is obtained by reducing integer a) by amount d), multiplying by b), and then reducing by c).
 
<math display="block"> (({\color{Red} 1} 0  {\color{Red} 33} 0 - 0. {\color{Red} 4} 0)  \times {\color{Red} 3} 0  {\color{Red} 55}) - {\color{Red} 2} = 31556926 = \frac{1 \, Tropical \, Year}{1 \, Second} </math>
 
Using the Distributive Property of Multiplication:
 
(10330 - 0.40) × 3055 = (10330 × 3055) - (0.40 × 3055)
                            =    31558150    -    1222
                            =    31556928
 
== Great Years ==
 
=== Step 6 ===
 
The Great Year is, by definition, a least common multiple of the sidereal year and the tropical year.  From steps 4 and 5 above, we have that the ratio of tropical years to sidereal years is:
 
<math display="block">{\frac{1 \, Tropical \, Year}{1 \, Sidereal \, Year}} \approx {\frac{(10330 - 0.40) \times 3055 \, sec}{10330 \times 3055 \, sec}} </math>
 
Divide top and bottom by amount d) and use the Distributive Property of Multiplication to obtain:
 
<math display="block"> {\frac{1 \, Tropical \, Year}{1 \, Sidereal \, Year}} \approx {\frac{(\frac{10330}{0.40} - \frac{0.40}{0.40}) \times 3055 \, sec}{(\frac{10330}{0.40}) \times 3055 \, sec}} </math>
 
From whence:
 
<math display="block"> {\frac{1 \, Tropical \, Year}{1 \, Sidereal \, Year}} \approx {\frac{(25825 - 1) \times 3055 \, sec}{(25825) \times 3055 \, sec}} </math>
 
Consequently:
 
<math display="block"> {\frac{25825 \, Tropical \, Year}{25824 \, Sidereal \, Year}} \approx {\frac{25825 \times (25824) \times 3055 \, sec}{25824 \times (25825) \times 3055 \, sec}} = 1 </math>
 
Finally:
 
<math display="block"> 1 \, Great \, Year \approx 25825 \, Tropical \, Years \approx 25824 \, Sidereal \, Years </math>
 
In terms of Long Multiplication; 0.40, 25825, and 10330 are related as follows:
        0.40
×  25825
————————————
    080
    200
      320
      08.0
+      2.00
————————————
    10330.00
 
== Galactic Years ==
 
=== Step 7 ===
 
Multiply integer c) by the square of integer a) to get a rough approximate galactic year (the number of tropical years required for the Solar System to orbit once around the galactic center).
 
<math display="block">{\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33}  0}^{2} = 213417800 \approx \frac{ 1 \, Galactic \, Year}{ 1 \, Tropical \, Year} </math>
 
Using Long Multiplication:
        10330
×      10330
——————————————
    10330
    00000
      30990
      30990
+      00000
——————————————
    106708900
 
And finally:
106708900 × 2 = 213417800
 
== Additional Relationships ==
 
=== Step 8 ===
 
Divide integer b) (in seconds) by the product of integer c) and integer a). The resulting value will be roughly (four digit approximation) ten orders of magnitude bigger than earth's standard gravitational parameter (μ = MG) divided by the speed of light (c) cubed.
 
<math display="block"> 10^{10} \times {\frac{{\mu}_{earth}}{c^{3}}} = 0.147\,936\,611\,505 s</math>
 
<math display="block">\frac{{\color{Red} 3} 0  {\color{Red} 55}\,s}{{\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33}  0}} = 0.147\,870\,280\,736 s</math>
 
=== Step 9 ===
 
A more accurate approximation (twelve digit) is obtained by reducing a) by 4.6316922:
 
<math display="block">\frac{{\color{Red} 3} 0  {\color{Red} 55}}{{\color{Red} 2} \times ({{\color{Red} 1} 0  {\color{Red} 33}  0} - 4.6316922)} = 0.147\,936\,611\,505 s</math>
 
=== Step 10 ===
 
The value of an object's Schwarzschild radius (R) is obtained from the standard gravitational parameter by multiplying by two and dividing by the speed of light squared. Comparing with steps 8 and 9 above, one obtains:
 
<math display="block">10^{10} \times {\frac{R_{earth}}{c}} = 0.295\,873\,223\,010 s</math>
 
<math display="block">\frac{{\color{Red} 3} 0  {\color{Red} 55}}{ ({{\color{Red} 1} 0  {\color{Red} 33}  0} - 4.6316922)} = 0.295\,873\,223\,010 s</math>
 
=== Step 11 ===
 
The Earth is not a perfect sphere. The radius and gravitational acceleration at the earth's surface are not constant values. Approximations can be obtained as follows:
 
<math display="block"> r_{earth} \approx {10^{-3}} \times c \times  \frac{{\color{Red} 3} 0  {\color{Red} 55}\,s}{\sqrt{{\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33}  0}}} = 6371 \, km</math>
 
<math display="block">g_{earth} = \frac{{\mu}_{earth}}{{r_{earth}}^{2}} \approx {10^{-4}} \times c \times \frac{1}{ {\color{Red} 3} 0  {\color{Red} 55} \, s} \approx {9.813 \, \frac{m}{s^{2}}} </math>

Latest revision as of 01:53, 27 September 2024


Bully Mnemonic Topics:


Bully Metric

The Bully Mnemonic is a technique for remembering the exact (eight digits) number of seconds that occur in Earth's sidereal year and tropical year; a good approximation (four digits) of the Earth's Great Year; and a rough approximation of the Solar System's galactic year.

The following relationships are encoded in the Bully Mnemonic:


A few additional approximations (four digits) can be obtained from values used in the Bully Mnemonic. These include an approximate relationship of the speed of light to the Earth's radius (r ≈ 6371), Schwarzschild radius (R), standard gravitational parameter (μ = MG ≈ 3.984e14), and a typical gravitational acceleration on earth's surface (g ≈ 9.813 ).


Bully Mnemonic Steps

Initial Definitions

Step 1

The first step is to write down the first five digits:

Step 2

The second step is to select odd digits and intersperse them with zeros to form integers a) and b) as shown below: (important to remember that the first integer ends with 33 followed by a 0, whereas the second integer ends with 55 with no trailing 0)

Step 3

The third step is to select even digits and define numbers c) and d) as shown below:

Sidereal & Tropical Years

Step 4

Multiply integers a) and b) from Step 2 to get the total number of seconds in a sidereal year.

Using Long Multiplication:

       3055
×     10330
————————————
   3055
    0000
     9165
      9165
+      0000
————————————
   31558150

Step 5

The tropical year has a slightly shorter duration than the sidereal year. The approximate number of seconds in a tropical year is obtained by reducing integer a) by amount d), and then multiplying by b).

The exact number of seconds in a tropical year is obtained by reducing integer a) by amount d), multiplying by b), and then reducing by c).

Using the Distributive Property of Multiplication:

(10330 - 0.40) × 3055 = (10330 × 3055) - (0.40 × 3055)
                            =    31558150    -     1222
                            =    31556928

Great Years

Step 6

The Great Year is, by definition, a least common multiple of the sidereal year and the tropical year. From steps 4 and 5 above, we have that the ratio of tropical years to sidereal years is:

Divide top and bottom by amount d) and use the Distributive Property of Multiplication to obtain:

From whence:

Consequently:

Finally:

In terms of Long Multiplication; 0.40, 25825, and 10330 are related as follows:

       0.40
×  25825
————————————
   080
    200
     320
      08.0
+      2.00
————————————
   10330.00

Galactic Years

Step 7

Multiply integer c) by the square of integer a) to get a rough approximate galactic year (the number of tropical years required for the Solar System to orbit once around the galactic center).

Using Long Multiplication:

       10330
×      10330
——————————————
   10330
    00000
     30990
      30990
+      00000
——————————————
   106708900

And finally:

106708900 × 2 = 213417800

Additional Relationships

Step 8

Divide integer b) (in seconds) by the product of integer c) and integer a). The resulting value will be roughly (four digit approximation) ten orders of magnitude bigger than earth's standard gravitational parameter (μ = MG) divided by the speed of light (c) cubed.

Step 9

A more accurate approximation (twelve digit) is obtained by reducing a) by 4.6316922:

Step 10

The value of an object's Schwarzschild radius (R) is obtained from the standard gravitational parameter by multiplying by two and dividing by the speed of light squared. Comparing with steps 8 and 9 above, one obtains:

Step 11

The Earth is not a perfect sphere. The radius and gravitational acceleration at the earth's surface are not constant values. Approximations can be obtained as follows: