Bully Metric: Difference between revisions
No edit summary |
|||
(75 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{| class=table style="width:100%;" | |||
|- | |||
| {{Original research}} | |||
| [https://physwiki.eeyabo.net/index.php/Main_Page <small>Development <br/>Area</small>] | |||
|} | |||
[[File:Vitruvian_Distance.png|thumb|right|600px| Five traditional units are accepted for use with the Buly system. Bully variants of the fathom, cubit, span, gallon, and stone, are defined below. <br/> 1 Bully Fathom = 200 kilopan (200,000 apan)<br/> 1 Bully Cubit = 50 kilopan (50,000 apan) <br/> 1 Bully Span = 25 kilopan (25,000 apan)<br/> 1 Bully Gallon = 5,000 cubed kilopan <br/> 1 Bully Stone = 500 Rn yta]] | |||
Six base units are included in the '''Bully Metric''' system. Two variants of the '''apan''' are defined as [https://en.wikipedia.org/wiki/Spacetime spacetime units]. Three variants of the '''nat''' are defined as transformation units. And the symbol '''"e"''' is used to represent elementary charge (the charge of a single electron). | |||
The ''' | The '''time apan''' (or timepan) (symbol '''ta''') is by definition exactly 30.55 femtoseconds. The '''length apan''' (or lightpan or lengthpan) (symbol '''la''') is by definition the distance light travels in vacuum in 30.55 femtoseconds. | ||
The | [[Bully Metric Time Apan|The Bully Metric time unit]]<br/> | ||
[[Bully Metric Length Apan|The Bully Metric length unit]] | |||
ta = 30.55 picoseconds (exact) | The '''infonat''' (natural unit of entropy) (symbol '''En''') is defined such that for an ideal gas in a given [https://en.wikipedia.org/wiki/Microstate_(statistical_mechanics) macrostate], the entropy of the gas divided by the natural logarithm of the number of real [https://en.wikipedia.org/wiki/Microstate_(statistical_mechanics) microstates] would be equivalent to one infonat. | ||
{| class="wikitable floatright" | |||
|+Table 1: Gravitational Mass | |||
|- | |||
! Body | |||
! colspan="2"|'''''mass''''' | |||
|- | |||
| Sun | |||
| style="border-right:none;"|{{val|161227199.623|(5)}} | |||
| style="border-left :none;"| Rn ta | |||
|- | |||
| Earth | |||
| style="border-right:none;"|{{val|484.2442275|(10)}} | |||
| style="border-left :none;"| Rn ta | |||
|- | |||
| Moon | |||
| style="border-right:none;"|{{val|5.9587358|(11)}} | |||
| style="border-left :none;"| Rn ta | |||
|} | |||
The '''rapinat''' (natural unit of rapidity) (symbol '''Rn''') is defined such that an object with a [https://en.wikipedia.org/wiki/Standard_gravitational_parameter standard gravitational parameter] equal to the speed of light in vacuum cubed multiplied by 30.55 femtoseconds, will have a gravitational mass of one rapinat timepan. The dwarf planet Pluto has a gravitational mass of roughly one rapinat timepan. Earth's moon has a gravitational mass of approximately six rapinat timepan. It would take roughly six Pluto sized objects smashed together to build something the size of the moon. A few example masses are shown in Table 1. | |||
{| class="wikitable floatright" | |||
|+Table 2: Quantum Rest Energy | |||
|- | |||
! Particle | |||
! colspan="2"|'''''rest energy''''' | |||
|- | |||
| Neutron | |||
| style="border-right:none;"|{{val|43608632955}} | |||
| style="border-left :none;"| An / ta | |||
|- | |||
| Proton | |||
| style="border-right:none;"|{{val|43548604715}} | |||
| style="border-left :none;"| An / ta | |||
|- | |||
| Electron | |||
| style="border-right:none;"|{{val|23717311.411}} | |||
| style="border-left :none;"| An / ta | |||
|- | |||
| Neutrino | |||
| style="border-right:none;"|< {{val|5.57}} | |||
| style="border-left :none;"| An / ta | |||
|- | |||
| Graviton | |||
| style="border-right:none;"|< {{val|3.6}} | |||
| style="border-left :none;"| An / Zta | |||
|} | |||
The '''actionat''' (natural unit of action) (symbol '''An'''), and '''elementary charge''' (symbol '''e'''), are defined such that if a Josephson Junction were exposed to microwave radiation of frequency 2 / 30.55 picoseconds (≈ [https://www.google.com/search?q=2+%2F+%2830.55+picoseconds%29 65.4664484 gigahertz]), then the junction would form equidistant Shapiro steps with separation of 2π actionats per kilo-time-apan electron. Also,the quantum Hall effect will have resistance steps of multiples of 2π actionats per electron squared. A few example rest energies are listed in Table2. | |||
ta = 30.55 femtoseconds (exact) | |||
la = [https://pml.nist.gov/cgi-bin/cuu/Value?c c] × 30.55 | la = [https://pml.nist.gov/cgi-bin/cuu/Value?c c] × 30.55 femtoseconds (exact) | ||
= [https://www.google.com/search?q=c+*+%2830.55e- | = [https://www.google.com/search?q=c+*+%2830.55e-15+s%29 9.1586595919 micrometers] (exact) | ||
En = [https://pml.nist.gov/cgi-bin/cuu/Value?k 1.380649 x 10<sup>-23</sup> joule / kelvin] (exact) | En = [https://pml.nist.gov/cgi-bin/cuu/Value?k 1.380649 x 10<sup>-23</sup> joule / kelvin] (exact) | ||
Line 37: | Line 93: | ||
<math>elementary \, charge = 1.0 \, e </math> (exact) | <math>elementary \, charge = 1.0 \, e </math> (exact) | ||
[[Bully Metric Bohr Model|The Bohr Atomic Model using Bully Metric units]]<br/> | |||
= Planck units and the Bully Metric = | = Planck units and the Bully Metric = | ||
Table | Table 3 below was taken from the Wikipedia [https://en.wikipedia.org/wiki/Planck_units#History_and_definition Planck units] article: | ||
{| class="wikitable" style="margin:1em auto 1em auto; background:#fff;" | {| class="wikitable" style="margin:1em auto 1em auto; background:#fff;" | ||
|+Table | |+Table 3: Modern values for Planck's original choice of quantities | ||
|- | |- | ||
! Name | ! Name | ||
! Expression | ! Expression | ||
! Value ([ | ! Value ([https://en.wikipedia.org/wiki/International_System_of_Units SI] units) | ||
|- style="text-align:left;" | |- style="text-align:left;" | ||
| Planck time | | Planck time | ||
Line 65: | Line 122: | ||
=== Planck to Bully conversion constant === | === Planck to Bully conversion constant === | ||
Since c, G, k<sub>B</sub>, and ħ are all normalized in the Bully system, this ensures that Bully units have a simple relationship with Planck's units. In fact, | Since c, G, k<sub>B</sub>, and ħ are all normalized in the Bully system, this ensures that Bully units have a simple relationship with Planck's units. In fact, multiplying each value from Table 3 by 0.566660, results in the corresponding Bully value multiplied by 10<sup>-30</sup>: | ||
0.566660 × t<sub>P</sub> = 1.00001(11) × 10<sup>-30</sup> ta | |||
0.566660 × l<sub>P</sub> = 1.00001(11) × 10<sup>-30</sup> la | |||
0.566660 × m<sub>P</sub> = 1.00001(11) × 10<sup>-30</sup> Rn ta | |||
Table 4 below uses algebraic substitution to illustrate that there is one unique multiplicative constant that converts between Planck and Bully values. When Planck energy is included in the table (see "Planck energy" row in Table 4), one finds that the Planck to Bully conversion factor for energy is the inverse of the mass, time, and length conversion factor. | |||
{| class="wikitable" style="margin:1em auto 1em auto; background:#fff;" | {| class="wikitable" style="margin:1em auto 1em auto; background:#fff;" | ||
|+Table | |+Table 4: Planck's units relationship with Bully units | ||
|- | |- | ||
! Name | ! Name | ||
Line 86: | Line 149: | ||
|- | |- | ||
| Planck temperature | | Planck temperature | ||
| <math>T_\text{P} | | <math>T_\text{P} \times k_\text{B} = m_\text{P} c^{2} = \sqrt{\frac{ Rn \, la^{2}}{An}} \, \frac{An}{ta}</math> | ||
|- style="text-align:center;" | |- style="text-align:center;" | ||
| ∴ | | ∴ | ||
| <math>\frac{t_\text{P}}{ta} = \frac{l_\text{P}}{la} = \frac{m_\text{P}}{Rn\,ta} = \frac{\frac{An}{ta}}{m_\text{P} c^{2}} = \sqrt{\frac{An}{ Rn\,la^{2}}}</math> | | <math>\frac{t_\text{P}}{ta} = \frac{l_\text{P}}{la} = \frac{m_\text{P}}{Rn\,ta} = \frac{\frac{An}{ta}}{m_\text{P} c^{2}} = \sqrt{\frac{An}{ Rn\,la^{2}}}</math> | ||
|} | |} | ||
=== The meaning of Planck units === | === The meaning of Planck units === | ||
Planck units are understood to represent the smallest meaningful size of each quantity. For example, the Planck length is the smallest meaningful length because looking at small objects through a microscope requires energy. If one were to build a microscope powerful enough to see objects at Planck length or smaller, the microscope would use so much energy that a black hole would form. | The Planck length and time units are understood to represent the smallest meaningful size of each quantity. For example, the Planck length is the smallest meaningful length because looking at small objects through a microscope requires energy. If one were to build a microscope powerful enough to see objects at Planck length or smaller, the microscope would use so much energy that a black hole would form. In fact, the existence of objects on the Planck scale would cause a black hole. | ||
The Planck mass of 2.176434(24)×10<sup>-8</sup> kg | The Planck mass of 2.176434(24)×10<sup>-8</sup> kg is not a minimum value. In the case of mass, the Planck value is a crossover point. The Planck mass represents the boundary between gravitation and quantum mechanics. If an object has a mass larger than the Planck mass then gravitational effects will become more important. If the mass is smaller than the Planck mass then quantum mechanical effects will be more important. | ||
=== Visible universe and the Bully Metric === | |||
Since Planck units represent the smallest meaningful length and time values, it seems appropriate to also consider the largest meaningful length and time value, and situate these within the Bully system. The universe is currently understood to be 13.7 billion years old, which is 14.15 × 10<sup>30</sup> ta in Bully units. The radius of the visible universe is 46.508 billion light years, which is 48.04 × 10<sup>30</sup> la in Bully units. | |||
= The apan prefix table = | = The apan prefix table = | ||
SI prefixes have the same meaning and conventions when used with apan variants as they have when used with standard SI units. See Table 5 below for the list of SI prefixes used with apan variants. Also shown in the table are the smallest (Planck scale) and largest (Visible Universe) values for each unit. | |||
{| class="wikitable" style="padding: 0; text-align: center; width: 0; white-space: nowrap;" | {| class="wikitable" style="padding: 0; text-align: center; width: 0; white-space: nowrap;" | ||
|+Table 5: The apan prefix table | |||
|- | |- | ||
! colspan=3| Prefix | ! colspan=3| Prefix | ||
Line 113: | Line 173: | ||
|- | |- | ||
! Name !! Symbol !! Base 10 !! Time !! Length !! Charge | ! Name !! Symbol !! Base 10 !! Time !! Length !! Charge | ||
|- | |||
! colspan=3| Maximum Value <br/> (Observable Universe) || <math> 14.15 \, Qta</math> || <math> 48.04 \, Qla</math> || — | |||
|- | |- | ||
| quetta || Q || 10<sup>30</sup> || Qta || Qla || Qe | | quetta || Q || 10<sup>30</sup> || Qta || Qla || Qe | ||
Line 156: | Line 218: | ||
| quecto || q || 10<sup>−30</sup> || qta || qla || qe | | quecto || q || 10<sup>−30</sup> || qta || qla || qe | ||
|- | |- | ||
| | ! colspan=3| Minimum value <br />(Planck Scale) || <math>\frac{qta}{0.566660}</math> || <math>\frac{qla}{0.566660}</math> || — | ||
|} | |} | ||
= The | = The Mass/Momentum/Energy prefix table = | ||
SI prefixes | Mass, Momentum, and Energy are compound units in the Bully system. Table 6 below lists SI prefixes used with the rapinat for gravitational masses, and with the actionat for quantum mechanical masses. Also shown in the table is the Planck scale cross-over value where gravitational and quantum effects meet. | ||
{| class="wikitable" style="padding: 0; text-align: center; width: 0; white-space: nowrap;" | {| class="wikitable" style="padding: 0; text-align: center; width: 0; white-space: nowrap;" | ||
|+Table 6: The Mass/Momentum/Energy prefix table | |||
|- | |- | ||
! colspan=3| Prefix | ! colspan=3| Prefix | ||
Line 170: | Line 233: | ||
|- | |- | ||
| quetta || Q || 10<sup>30</sup> || Rn Qta || Rn Qla || Rn c Qla | | quetta || Q || 10<sup>30</sup> || Rn Qta || Rn Qla || Rn c Qla | ||
|- | |||
! colspan=6| Observable Universe Mass = 480 Rn Rta | |||
|- | |- | ||
| ronna || R || 10<sup>27</sup> || Rn Rta || Rn Rla || Rn c Rla | | ronna || R || 10<sup>27</sup> || Rn Rta || Rn Rla || Rn c Rla | ||
Line 188: | Line 253: | ||
|- | |- | ||
| kilo || k || 10<sup>3</sup> || Rn kta || Rn kla || Rn c kla | | kilo || k || 10<sup>3</sup> || Rn kta || Rn kla || Rn c kla | ||
|- | |||
! colspan=6| Earth Mass = 484 Rn ta | |||
|- | |- | ||
| — || || 10<sup>0</sup> || Rn ta || Rn la || Rn c la | | — || || 10<sup>0</sup> || Rn ta || Rn la || Rn c la | ||
Line 211: | Line 278: | ||
| quecto || q || 10<sup>−30</sup> || Rn qta || Rn qla || Rn c qla | | quecto || q || 10<sup>−30</sup> || Rn qta || Rn qla || Rn c qla | ||
|- | |- | ||
! rowspan=2 ! colspan=3| Crossover value <br />(Planck Scale) || <math>\frac{Rn \, qta}{ | ! rowspan=2 ! colspan=3| Crossover value <br />(Planck Scale)<br/> (21.765 micro-grams) || <math>\frac{Rn \, qta}{0.566660}</math> || <math>\frac{Rn \, qla}{0.566660}</math> || <math>\frac{Rn \, c \, qla}{0.566660}</math> | ||
|- | |- | ||
! <math>\frac{ | ! <math>\frac{0.566660 \, An}{c \, qla}</math> || <math>\frac{0.566660 \, An}{qla}</math> || <math>\frac{0.566660 \, An}{qta}</math> | ||
|- | |- | ||
| quecto || q || 10<sup>−30</sup> || An / c qla || An / qla || An / qta | | quecto || q || 10<sup>−30</sup> || An / c qla || An / qla || An / qta | ||
Line 234: | Line 301: | ||
|- | |- | ||
| milli || m || 10<sup>−3</sup> || An / c mla || An / mla || An / mta | | milli || m || 10<sup>−3</sup> || An / c mla || An / mla || An / mta | ||
|- | |||
! colspan=6| 1.00 electronvolt = 46.414 An / ta | |||
|- | |- | ||
| — || || 10<sup>0</sup> || An / c la || An / la || An / ta | | — || || 10<sup>0</sup> || An / c la || An / la || An / ta | ||
Line 257: | Line 326: | ||
| quetta || Q || 10<sup>30</sup> || An / c Qla || An / Qla || An / Qta | | quetta || Q || 10<sup>30</sup> || An / c Qla || An / Qla || An / Qta | ||
|} | |} | ||
Latest revision as of 19:06, 19 October 2024
|
Development Area |
1 Bully Fathom = 200 kilopan (200,000 apan)
1 Bully Cubit = 50 kilopan (50,000 apan)
1 Bully Span = 25 kilopan (25,000 apan)
1 Bully Gallon = 5,000 cubed kilopan
1 Bully Stone = 500 Rn yta
Six base units are included in the Bully Metric system. Two variants of the apan are defined as spacetime units. Three variants of the nat are defined as transformation units. And the symbol "e" is used to represent elementary charge (the charge of a single electron).
The time apan (or timepan) (symbol ta) is by definition exactly 30.55 femtoseconds. The length apan (or lightpan or lengthpan) (symbol la) is by definition the distance light travels in vacuum in 30.55 femtoseconds.
The Bully Metric time unit
The Bully Metric length unit
The infonat (natural unit of entropy) (symbol En) is defined such that for an ideal gas in a given macrostate, the entropy of the gas divided by the natural logarithm of the number of real microstates would be equivalent to one infonat.
Body | mass | |
---|---|---|
Sun | Template:Val | Rn ta |
Earth | Template:Val | Rn ta |
Moon | Template:Val | Rn ta |
The rapinat (natural unit of rapidity) (symbol Rn) is defined such that an object with a standard gravitational parameter equal to the speed of light in vacuum cubed multiplied by 30.55 femtoseconds, will have a gravitational mass of one rapinat timepan. The dwarf planet Pluto has a gravitational mass of roughly one rapinat timepan. Earth's moon has a gravitational mass of approximately six rapinat timepan. It would take roughly six Pluto sized objects smashed together to build something the size of the moon. A few example masses are shown in Table 1.
Particle | rest energy | |
---|---|---|
Neutron | Template:Val | An / ta |
Proton | Template:Val | An / ta |
Electron | Template:Val | An / ta |
Neutrino | < Template:Val | An / ta |
Graviton | < Template:Val | An / Zta |
The actionat (natural unit of action) (symbol An), and elementary charge (symbol e), are defined such that if a Josephson Junction were exposed to microwave radiation of frequency 2 / 30.55 picoseconds (≈ 65.4664484 gigahertz), then the junction would form equidistant Shapiro steps with separation of 2π actionats per kilo-time-apan electron. Also,the quantum Hall effect will have resistance steps of multiples of 2π actionats per electron squared. A few example rest energies are listed in Table2.
ta = 30.55 femtoseconds (exact) la = c × 30.55 femtoseconds (exact) = 9.1586595919 micrometers (exact) En = 1.380649 x 10-23 joule / kelvin (exact) Rn = (c3 / G) (exact) ≈ 4.0370 × 1035 kilogram / second (approximate) An = 4 / (2π × KJ2 × RJ) (exact) = 1.05457182 × 10-34 joule second (approximate) e = 2 / (KJ × RJ) (exact) = 1.60217663 × 10-19 coulombs (approximate)
The above definitions ensure normalization of the speed of light (c), Newton's gravitational constant (G), the Boltzmann constant (kB), the reduced Planck constant (ħ), and the elementary charge (e):
(exact)
(exact)
(exact)
(exact)
(exact)
The Bohr Atomic Model using Bully Metric units
Planck units and the Bully Metric
Table 3 below was taken from the Wikipedia Planck units article:
Name | Expression | Value (SI units) |
---|---|---|
Planck time | 5.391247(60)×10−44 s | |
Planck length | 1.616255(18)×10−35 m | |
Planck mass | 2.176434(24)×10-8 kg | |
Planck temperature | 1.416784(16)×1032 K |
Planck to Bully conversion constant
Since c, G, kB, and ħ are all normalized in the Bully system, this ensures that Bully units have a simple relationship with Planck's units. In fact, multiplying each value from Table 3 by 0.566660, results in the corresponding Bully value multiplied by 10-30:
0.566660 × tP = 1.00001(11) × 10-30 ta 0.566660 × lP = 1.00001(11) × 10-30 la 0.566660 × mP = 1.00001(11) × 10-30 Rn ta
Table 4 below uses algebraic substitution to illustrate that there is one unique multiplicative constant that converts between Planck and Bully values. When Planck energy is included in the table (see "Planck energy" row in Table 4), one finds that the Planck to Bully conversion factor for energy is the inverse of the mass, time, and length conversion factor.
Name | Expression |
---|---|
Planck time | |
Planck length | |
Planck mass | |
Planck energy | |
Planck temperature | |
∴ |
The meaning of Planck units
The Planck length and time units are understood to represent the smallest meaningful size of each quantity. For example, the Planck length is the smallest meaningful length because looking at small objects through a microscope requires energy. If one were to build a microscope powerful enough to see objects at Planck length or smaller, the microscope would use so much energy that a black hole would form. In fact, the existence of objects on the Planck scale would cause a black hole.
The Planck mass of 2.176434(24)×10-8 kg is not a minimum value. In the case of mass, the Planck value is a crossover point. The Planck mass represents the boundary between gravitation and quantum mechanics. If an object has a mass larger than the Planck mass then gravitational effects will become more important. If the mass is smaller than the Planck mass then quantum mechanical effects will be more important.
Visible universe and the Bully Metric
Since Planck units represent the smallest meaningful length and time values, it seems appropriate to also consider the largest meaningful length and time value, and situate these within the Bully system. The universe is currently understood to be 13.7 billion years old, which is 14.15 × 1030 ta in Bully units. The radius of the visible universe is 46.508 billion light years, which is 48.04 × 1030 la in Bully units.
The apan prefix table
SI prefixes have the same meaning and conventions when used with apan variants as they have when used with standard SI units. See Table 5 below for the list of SI prefixes used with apan variants. Also shown in the table are the smallest (Planck scale) and largest (Visible Universe) values for each unit.
Prefix | Spacetime Symbols | ||||
---|---|---|---|---|---|
Name | Symbol | Base 10 | Time | Length | Charge |
Maximum Value (Observable Universe) |
— | ||||
quetta | Q | 1030 | Qta | Qla | Qe |
ronna | R | 1027 | Rta | Rla | Re |
yotta | Y | 1024 | Yta | Yla | Ye |
zetta | Z | 1021 | Zta | Zla | Ze |
exa | E | 1018 | Eta | Ela | Ee |
peta | P | 1015 | Pta | Pla | Pe |
tera | T | 1012 | Tta | Tla | Te |
giga | G | 109 | Gta | Gla | Ge |
mega | M | 106 | Mta | Mla | Me |
kilo | k | 103 | kta | kla | ke |
— | — | 100 | ta | la | e |
milli | m | 10−3 | mta | mla | me |
micro | μ | 10−6 | μta | μla | μe |
nano | n | 10−9 | nta | nla | ne |
pico | p | 10−12 | pta | pla | pe |
femto | f | 10−15 | fta | fla | fe |
atto | a | 10−18 | ata | ala | ae |
zepto | z | 10−21 | zta | zla | ze |
yocto | y | 10−24 | yta | yla | ye |
ronto | r | 10−27 | rta | rla | re |
quecto | q | 10−30 | qta | qla | qe |
Minimum value (Planck Scale) |
— |
The Mass/Momentum/Energy prefix table
Mass, Momentum, and Energy are compound units in the Bully system. Table 6 below lists SI prefixes used with the rapinat for gravitational masses, and with the actionat for quantum mechanical masses. Also shown in the table is the Planck scale cross-over value where gravitational and quantum effects meet.
Prefix | Bully Metric Symbols | ||||
---|---|---|---|---|---|
Name | Symbol | Base 10 | Mass | Momentum | Energy |
quetta | Q | 1030 | Rn Qta | Rn Qla | Rn c Qla |
Observable Universe Mass = 480 Rn Rta | |||||
ronna | R | 1027 | Rn Rta | Rn Rla | Rn c Rla |
yotta | Y | 1024 | Rn Yta | Rn Yla | Rn c Yla |
zetta | Z | 1021 | Rn Zta | Rn Zla | Rn c Zla |
exa | E | 1018 | Rn Eta | Rn Ela | Rn c Ela |
peta | P | 1015 | Rn Pta | Rn Pla | Rn c Pla |
tera | T | 1012 | Rn Tta | Rn Tla | Rn c Tla |
giga | G | 109 | Rn Gta | Rn Gla | Rn c Gla |
mega | M | 106 | Rn Mta | Rn Mla | Rn c Mla |
kilo | k | 103 | Rn kta | Rn kla | Rn c kla |
Earth Mass = 484 Rn ta | |||||
— | 100 | Rn ta | Rn la | Rn c la | |
milli | m | 10−3 | Rn mta | Rn mla | Rn c mla |
micro | μ | 10−6 | Rn μta | Rn μla | Rn c μla |
nano | n | 10−9 | Rn nta | Rn nla | Rn c nla |
pico | p | 10−12 | Rn pta | Rn pla | Rn c pla |
femto | f | 10−15 | Rn fta | Rn fla | Rn c fla |
atto | a | 10−18 | Rn ata | Rn ala | Rn c ala |
zepto | z | 10−21 | Rn zta | Rn zla | Rn c zla |
yocto | y | 10−24 | Rn yta | Rn yla | Rn c yla |
ronto | r | 10−27 | Rn rta | Rn rla | Rn c rla |
quecto | q | 10−30 | Rn qta | Rn qla | Rn c qla |
Crossover value (Planck Scale) (21.765 micro-grams) |
|||||
quecto | q | 10−30 | An / c qla | An / qla | An / qta |
ronto | r | 10−27 | An / c rla | An / rla | An / rta |
yocto | y | 10−24 | An / c yla | An / yla | An / yta |
zepto | z | 10−21 | An / c zla | An / zla | An / zta |
atto | a | 10−18 | An / c ala | An / ala | An / ata |
femto | f | 10−15 | An / c fla | An / fla | An / fta |
pico | p | 10−12 | An / c pla | An / pla | An / pta |
nano | n | 10−9 | An / c nla | An / nla | An / nta |
micro | μ | 10−6 | An / c μla | An / μla | An / μta |
milli | m | 10−3 | An / c mla | An / mla | An / mta |
1.00 electronvolt = 46.414 An / ta | |||||
— | 100 | An / c la | An / la | An / ta | |
kilo | k | 103 | An / c kla | An / kla | An / kta |
mega | M | 106 | An / c Mla | An / Mla | An / Mta |
giga | G | 109 | An / c Gla | An / Gla | An / Gta |
tera | T | 1012 | An / c Tla | An / Tla | An / Tta |
peta | P | 1015 | An / c Pla | An / Pla | An / Pta |
exa | E | 1018 | An / c Ela | An / Ela | An / Eta |
zetta | Z | 1021 | An / c Zla | An / Zla | An / Zta |
yotta | Y | 1024 | An / c Yla | An / Yla | An / Yta |
ronna | R | 1027 | An / c Rla | An / Rla | An / Rta |
quetta | Q | 1030 | An / c Qla | An / Qla | An / Qta |