Bully Metric: Difference between revisions

From PhysWiki
No edit summary
 
(42 intermediate revisions by the same user not shown)
Line 1: Line 1:
Six base units are included in the '''Bully Metric''' system. Two variants of the '''apan''' are defined as [https://en.wikipedia.org/wiki/Spacetime space-time units]. Three variants of the '''nat''' are defined as transformation units. And the symbol '''"e"''' is used to represent elementary charge (the charge of a single electron).
{| class=table style="width:100%;"
|-
| {{Original research}}
| [https://physwiki.eeyabo.net/index.php/Main_Page <small>Development <br/>Area</small>]
|}
 
[[File:Vitruvian_Distance.png|thumb|right|600px| Five traditional units are accepted for use with the Buly system. Bully variants of the fathom, cubit, span, gallon, and stone, are defined below. <br/> 1 Bully Fathom = 200 kilopan (200,000 apan)<br/> 1 Bully Cubit = 50 kilopan (50,000 apan) <br/> 1 Bully Span = 25 kilopan (25,000 apan)<br/> 1 Bully Gallon = 5,000 cubed kilopan <br/> 1 Bully Stone = 500 Rn yta]]


The '''time-pan''' (or time apan) (symbol '''ta''') is by definition exactly 30.55 picoseconds. The '''light-pan''' (or light apan or length apan) (symbol '''la''') is by definition the distance light travels in vacuum in 30.55 picoseconds.
Six base units are included in the '''Bully Metric''' system. Two variants of the '''apan''' are defined as [https://en.wikipedia.org/wiki/Spacetime spacetime units]. Three variants of the '''nat''' are defined as transformation units.  And the symbol '''"e"''' is used to represent elementary charge (the charge of a single electron).


The '''info-nat''' (natural unit of entropy) (symbol '''En''') is defined such that for an ideal gas in a given [https://en.wikipedia.org/wiki/Microstate_(statistical_mechanics) macrostate], the entropy of the gas divided by the natural logarithm of the number of real [https://en.wikipedia.org/wiki/Microstate_(statistical_mechanics) microstates] would be equivalent to one info-nat.
The '''time apan''' (or timepan) (symbol '''ta''') is by definition exactly 30.55 femtoseconds. The '''length apan''' (or lightpan or lengthpan) (symbol '''la''') is by definition the distance light travels in vacuum in 30.55 femtoseconds.  


The '''rapid-nat''' (natural unit of rapidity) (symbol '''Rn''') is defined such that an object with a [https://en.wikipedia.org/wiki/Standard_gravitational_parameter standard gravitational parameter] equal to the speed of light in vacuum cubed multiplied by 30.55 picoseconds, will have a gravitational mass of one rapid-nat time-pan.
[[Bully Metric Time Apan|The Bully Metric time unit]]<br/>
[[Bully Metric Length Apan|The Bully Metric length unit]]


The '''action-nat''' (natural unit of action) (symbol '''An'''), and '''elementary charge''' (symbol '''e'''), are defined such that if a Josephson Junction were exposed to microwave radiation of frequency 2 / 30.55 picoseconds (≈ [https://www.google.com/search?q=2+%2F+%2830.55+picoseconds%29 65.4664484 gigahertz]), then the junction would form equidistant Shapiro steps with separation of 2π action-nats per time-pan electron.  Also,the quantum Hall effect will have resistance steps of multiples of 2π action-nats per electron squared.
The '''infonat''' (natural unit of entropy) (symbol '''En''') is defined such that for an ideal gas in a given [https://en.wikipedia.org/wiki/Microstate_(statistical_mechanics) macrostate], the entropy of the gas divided by the natural logarithm of the number of real [https://en.wikipedia.org/wiki/Microstate_(statistical_mechanics) microstates] would be equivalent to one infonat.


  ta = 30.55 picoseconds (exact)
{| class="wikitable floatright"
|+Table 1: Gravitational Mass
|-
! Body
! colspan="2"|'''''mass'''''
|-
| Sun
| style="border-right:none;"|{{val|161227199.623|(5)}}
| style="border-left :none;"| Rn ta
|-
| Earth
| style="border-right:none;"|{{val|484.2442275|(10)}}
| style="border-left :none;"| Rn ta
|-
| Moon
| style="border-right:none;"|{{val|5.9587358|(11)}}
| style="border-left :none;"| Rn ta
|}
 
The '''rapinat''' (natural unit of rapidity) (symbol '''Rn''') is defined such that an object with a [https://en.wikipedia.org/wiki/Standard_gravitational_parameter standard gravitational parameter] equal to the speed of light in vacuum cubed multiplied by 30.55 femtoseconds, will have a gravitational mass of one rapinat timepan.  The dwarf planet Pluto has a gravitational mass of roughly one rapinat timepan.  Earth's moon has a gravitational mass of approximately six rapinat timepan. It would take roughly six Pluto sized objects smashed together to build something the size of the moon.  A few example masses are shown in Table 1.
 
{| class="wikitable floatright"
|+Table 2: Quantum Rest Energy
|-
! Particle
! colspan="2"|'''''rest energy'''''
|-
| Neutron
| style="border-right:none;"|{{val|43608632955}}
| style="border-left :none;"| An / ta
|-
| Proton
| style="border-right:none;"|{{val|43548604715}}
| style="border-left :none;"| An / ta
|-
| Electron
| style="border-right:none;"|{{val|23717311.411}}
| style="border-left :none;"| An / ta
|-
| Neutrino
| style="border-right:none;"|< {{val|5.57}}
| style="border-left :none;"| An / ta
|-
| Graviton
| style="border-right:none;"|< {{val|3.6}}
| style="border-left :none;"| An / Zta
|}
The '''actionat''' (natural unit of action) (symbol '''An'''), and '''elementary charge''' (symbol '''e'''), are defined such that if a Josephson Junction were exposed to microwave radiation of frequency 2 / 30.55 picoseconds (≈ [https://www.google.com/search?q=2+%2F+%2830.55+picoseconds%29 65.4664484 gigahertz]), then the junction would form equidistant Shapiro steps with separation of 2π actionats per kilo-time-apan electron.  Also,the quantum Hall effect will have resistance steps of multiples of 2π actionats per electron squared.  A few example rest energies are listed in Table2.
 
ta = 30.55 femtoseconds (exact)
   
   
  la = [https://pml.nist.gov/cgi-bin/cuu/Value?c c] × 30.55 picoseconds (exact)
  la = [https://pml.nist.gov/cgi-bin/cuu/Value?c c] × 30.55 femtoseconds (exact)
     = [https://www.google.com/search?q=c+*+%2830.55e-12+s%29 9.1586595919 millimeters] (exact)
     = [https://www.google.com/search?q=c+*+%2830.55e-15+s%29 9.1586595919 micrometers] (exact)
   
   
  En = [https://pml.nist.gov/cgi-bin/cuu/Value?k 1.380649 x 10<sup>-23</sup> joule / kelvin] (exact)
  En = [https://pml.nist.gov/cgi-bin/cuu/Value?k 1.380649 x 10<sup>-23</sup> joule / kelvin] (exact)
Line 37: Line 93:
<math>elementary \, charge = 1.0 \, e </math>  (exact)
<math>elementary \, charge = 1.0 \, e </math>  (exact)


[[Bully Metric Bohr Model|The Bohr Atomic Model using Bully Metric units]]<br/>


= Planck units and the Bully Metric =
= Planck units and the Bully Metric =
Table 1 below was taken from the Wikipedia [https://en.wikipedia.org/wiki/Planck_units#History_and_definition Planck units] article:
Table 3 below was taken from the Wikipedia [https://en.wikipedia.org/wiki/Planck_units#History_and_definition Planck units] article:
{| class="wikitable" style="margin:1em auto 1em auto; background:#fff;"
{| class="wikitable" style="margin:1em auto 1em auto; background:#fff;"
|+Table 1: Modern values for Planck's original choice of quantities
|+Table 3: Modern values for Planck's original choice of quantities
|-
|-
  ! Name
  ! Name
Line 65: Line 122:


=== Planck to Bully conversion constant ===
=== Planck to Bully conversion constant ===
Since c, G, k<sub>B</sub>, and ħ are all normalized in the Bully system, this ensures that Bully units have a simple relationship with Planck's units.  In fact, multiplying each value from Table 1 by 566.660, results in the corresponding Bully value multiplied by 10<sup>-30</sup>:
Since c, G, k<sub>B</sub>, and ħ are all normalized in the Bully system, this ensures that Bully units have a simple relationship with Planck's units.  In fact, multiplying each value from Table 3 by 0.566660, results in the corresponding Bully value multiplied by 10<sup>-30</sup>:


  566.660 × t<sub>P</sub> = 1.00001(11) × 10<sup>-30</sup> ta
  0.566660 × t<sub>P</sub> = 1.00001(11) × 10<sup>-30</sup> ta
  566.660 × l<sub>P</sub> = 1.00001(11) × 10<sup>-30</sup> la
  0.566660 × l<sub>P</sub> = 1.00001(11) × 10<sup>-30</sup> la
  566.660 × m<sub>P</sub> = 1.00001(11) × 10<sup>-30</sup> Rn ta
  0.566660 × m<sub>P</sub> = 1.00001(11) × 10<sup>-30</sup> Rn ta


Table 2 below uses algebraic substitution to illustrate that there is a single multiplicative constant that converts between Planck and Bully values. When Planck energy is included in the table (see "Planck energy" row in Table 2), one finds that the Planck to Bully conversion factor for energy is the inverse of the mass, time, and length conversion factor.
Table 4 below uses algebraic substitution to illustrate that there is one unique multiplicative constant that converts between Planck and Bully values. When Planck energy is included in the table (see "Planck energy" row in Table 4), one finds that the Planck to Bully conversion factor for energy is the inverse of the mass, time, and length conversion factor.


{| class="wikitable" style="margin:1em auto 1em auto; background:#fff;"
{| class="wikitable" style="margin:1em auto 1em auto; background:#fff;"
|+Table 2: Planck's units relationship with Bully units
|+Table 4: Planck's units relationship with Bully units
|-
|-
  ! Name
  ! Name
Line 99: Line 156:


=== The meaning of Planck units ===
=== The meaning of Planck units ===
The Planck length and time units are understood to represent the smallest meaningful size of each quantity. For example, the Planck length is the smallest meaningful length because looking at small objects through a microscope requires energy.  If one were to build a microscope powerful enough to see objects at Planck length or smaller, the microscope would use so much energy that a black hole would form. In fact, it is generally understood that the existence of objects on the Planck scale would cause a black hole.
The Planck length and time units are understood to represent the smallest meaningful size of each quantity. For example, the Planck length is the smallest meaningful length because looking at small objects through a microscope requires energy.  If one were to build a microscope powerful enough to see objects at Planck length or smaller, the microscope would use so much energy that a black hole would form. In fact, the existence of objects on the Planck scale would cause a black hole.


The Planck mass of 2.176434(24)×10<sup>-8</sup> kg is not a minimum value.  In the case of mass, the Planck value is a crossover point.  The Planck mass represents the boundary between gravitation and quantum mechanics.  If an object has a mass larger than the Planck mass then gravitational effects will become more important.  If the mass is smaller than the Planck mass then quantum mechanical effects will be more important.
The Planck mass of 2.176434(24)×10<sup>-8</sup> kg is not a minimum value.  In the case of mass, the Planck value is a crossover point.  The Planck mass represents the boundary between gravitation and quantum mechanics.  If an object has a mass larger than the Planck mass then gravitational effects will become more important.  If the mass is smaller than the Planck mass then quantum mechanical effects will be more important.


= Visible universe and the Bully Metric =
=== Visible universe and the Bully Metric ===
Since Planck units represent the smallest meaningful length and time values, it seems appropriate to next consider the largest meaningful length and time value, and situate these within the Bully system.  The universe is currently understood to be 13.7 billion years old, which is 14.15 × 10<sup>27</sup> ta  in Bully units. The radius of the visible universe is 46.508 billion light years, which is 48.04 × 10<sup>27</sup> la in Bully units.
Since Planck units represent the smallest meaningful length and time values, it seems appropriate to also consider the largest meaningful length and time value, and situate these within the Bully system.  The universe is currently understood to be 13.7 billion years old, which is 14.15 × 10<sup>30</sup> ta  in Bully units. The radius of the visible universe is 46.508 billion light years, which is 48.04 × 10<sup>30</sup> la in Bully units.


= The apan prefix table =
= The apan prefix table =
SI prefixes have the same meaning and conventions when used with apan variants as they have when used with standard SI units. See Table 3 below for the list of SI prefixes used with apan variants.  Also shown in the table are the smallest and largest meaningful values for each unit.
SI prefixes have the same meaning and conventions when used with apan variants as they have when used with standard SI units. See Table 5 below for the list of SI prefixes used with apan variants.  Also shown in the table are the smallest (Planck scale) and largest (Visible Universe) values for each unit.


{| class="wikitable" style="padding: 0; text-align: center; width: 0; white-space: nowrap;"
{| class="wikitable" style="padding: 0; text-align: center; width: 0; white-space: nowrap;"
|+Table 3: The apan prefix table
|+Table 5: The apan prefix table
|-
|-
! colspan=3| Prefix
! colspan=3| Prefix
Line 116: Line 173:
|-
|-
! Name !! Symbol !!  Base 10 !! Time !! Length !! Charge
! Name !! Symbol !!  Base 10 !! Time !! Length !! Charge
|-
! colspan=3| Maximum Value <br/> (Observable Universe) || <math> 14.15 \, Qta</math> || <math> 48.04 \, Qla</math> || —
|-
|-
| quetta || Q || 10<sup>30</sup> || Qta || Qla || Qe
| quetta || Q || 10<sup>30</sup> || Qta || Qla || Qe
|-
! colspan=3| Visible Universe || <math>14.15 \, Rta</math> || <math>48.04 \, Rla</math> || —
|-
|-
| ronna || R || 10<sup>27</sup> || Rta || Rla || Re
| ronna || R || 10<sup>27</sup> || Rta || Rla || Re
Line 161: Line 218:
| quecto || q || 10<sup>−30</sup> || qta || qla || qe
| quecto || q || 10<sup>−30</sup> || qta || qla || qe
|-
|-
! colspan=3| Minimum value <br />(Planck Scale) || <math>\frac{qta}{566.66}</math> || <math>\frac{qla}{566.66}</math> || —  
! colspan=3| Minimum value <br />(Planck Scale) || <math>\frac{qta}{0.566660}</math> || <math>\frac{qla}{0.566660}</math> || —  
|}
|}


= The nat prefix table =
= The Mass/Momentum/Energy prefix table =
Mass, Momentum, and Energy are compound units in the Bully system.  Table 6 below lists SI prefixes used with the rapinat for gravitational masses, and with the actionat for quantum mechanical masses. Also shown in the table is the Planck scale cross-over value where gravitational and quantum effects meet.


{| class="wikitable" style="padding: 0; text-align: center; width: 0; white-space: nowrap;"
{| class="wikitable" style="padding: 0; text-align: center; width: 0; white-space: nowrap;"
|+Table 6: The Mass/Momentum/Energy prefix table
|-
|-
! colspan=3| Prefix
! colspan=3| Prefix
Line 174: Line 233:
|-
|-
| quetta || Q || 10<sup>30</sup> || Rn Qta || Rn Qla || Rn c Qla
| quetta || Q || 10<sup>30</sup> || Rn Qta || Rn Qla || Rn c Qla
|-
! colspan=6| Observable Universe Mass = 480 Rn Rta
|-
|-
| ronna || R || 10<sup>27</sup> || Rn Rta || Rn Rla || Rn c Rla
| ronna || R || 10<sup>27</sup> || Rn Rta || Rn Rla || Rn c Rla
Line 192: Line 253:
|-
|-
| kilo || k || 10<sup>3</sup> || Rn kta || Rn kla || Rn c kla
| kilo || k || 10<sup>3</sup> || Rn kta || Rn kla || Rn c kla
|-
! colspan=6| Earth Mass = 484 Rn ta
|-
|-
| — ||  || 10<sup>0</sup> || Rn ta || Rn la || Rn c la
| — ||  || 10<sup>0</sup> || Rn ta || Rn la || Rn c la
Line 215: Line 278:
| quecto || q || 10<sup>−30</sup> || Rn qta || Rn qla || Rn c qla
| quecto || q || 10<sup>−30</sup> || Rn qta || Rn qla || Rn c qla
|-
|-
! rowspan=2 ! colspan=3| Crossover value <br />(Planck Scale) || <math>\frac{Rn \, qta}{566.66}</math> || <math>\frac{Rn \, qla}{566.66}</math> || <math>\frac{Rn \, c \, qla}{566.66}</math>
! rowspan=2 ! colspan=3| Crossover value <br />(Planck Scale)<br/> (21.765 micro-grams) || <math>\frac{Rn \, qta}{0.566660}</math> || <math>\frac{Rn \, qla}{0.566660}</math> || <math>\frac{Rn \, c \, qla}{0.566660}</math>
|-
|-
!  <math>\frac{566.66 \, An}{c \, qla}</math> || <math>\frac{566.66 \, An}{qla}</math> || <math>\frac{566.66 \, An}{qta}</math>
!  <math>\frac{0.566660 \, An}{c \, qla}</math> || <math>\frac{0.566660 \, An}{qla}</math> || <math>\frac{0.566660 \, An}{qta}</math>
|-
|-
| quecto || q || 10<sup>−30</sup> || An / c qla || An / qla || An / qta
| quecto || q || 10<sup>−30</sup> || An / c qla || An / qla || An / qta
Line 238: Line 301:
|-
|-
| milli || m || 10<sup>−3</sup> || An / c mla || An / mla || An / mta
| milli || m || 10<sup>−3</sup> || An / c mla || An / mla || An / mta
|-
! colspan=6| 1.00 electronvolt = 46.414 An / ta
|-
|-
| — ||  || 10<sup>0</sup> || An / c la || An / la || An / ta
| — ||  || 10<sup>0</sup> || An / c la || An / la || An / ta
Line 261: Line 326:
| quetta || Q || 10<sup>30</sup> || An / c Qla || An / Qla || An / Qta
| quetta || Q || 10<sup>30</sup> || An / c Qla || An / Qla || An / Qta
|}
|}
= pream =
{| class="wikitable" style="margin: 1em auto 1em auto; background-color: #ffffff"
|+ Defining Constants
! scope="col" | Symbol
! scope="col" | SI value
! scope="col" | Bully
|-
| <math>c \,</math>
| <math>299 792 458 \ </math>
| <math> 1 </math>
|-
| <math>h \,</math>
| <math>\frac{4 \times 10^{-18}}{(25812.807) (483597.9)^2} \ </math>
| <math> 2\pi \,</math>
|-
| <math>\hbar=\frac{h}{2 \pi}</math>
| <math>\frac{2 \times 10^{-18}}{\pi (25812.807) (483597.9)^2} \ </math>
| <math> 1 \,</math>
|-
| <math>e \,</math>
| <math>\frac{2 \times 10^{-9}}{(25812.807) (483597.9)} \ </math>
| <math> 1 \,</math>
|-
| <math>K_J =\frac{2e}{h} \,</math>
| <math>483597.9 \times 10^9 \,</math>
| <math>\frac{1}{\pi} \,</math>
|-
| <math>R_K =\frac{h}{e^2} \,</math>
| <math>25812.807 \,</math>
| <math>2\pi \,</math>
|-
| <math>Z_0 = 2 \alpha R_K \,</math>
| <math>2 \alpha (25812.807) \,</math>
| <math>4 \pi \alpha \,</math>
|-
| <math> \varepsilon_0 = \frac{1}{Z_0 c} \,</math>
| <math>\frac{1}{2 \alpha (25812.807) (299792458)} \ </math>
| <math>\frac{1}{4 \pi \alpha} \,</math>
|-
| <math> \mu_0 = \frac{Z_0}{c} \,</math>
| <math>\frac{2 \alpha (25812.807)}{299792458} \ </math>
| <math>4 \pi \alpha \,</math>
|-
| <math>G \,</math>
| <math>- \,</math>
| <math>1 \,</math>
|}
The Bully system includes units of transformation which are defined by analogy with [https://en.wikipedia.org/wiki/Units_of_information units of information]. These include the nat (n), bit (b), trit(t), and dit or digit (d). For each type of transformation unit, one may convert from nats to bits, trits, or dits, by multiplication with the natural logarithm as shown below:
b = n × log<sub>e</sub>(2)
t = n × log<sub>e</sub>(3)
d = n × log<sub>e</sub>(10)
where log<sub>e</sub> is the natural logarithm.
The above definitions ensure normalization of Boltzmann's constant and Planck's constant when using Bully units:
k<sub>B</sub> = 1.0 Tn (exact)
<math display="inline">\hbar</math> = 1.0 An (exact)
= Planck units and the Bully Metric =
The following (table 1) was taken from the Wikipedia [https://en.wikipedia.org/wiki/Planck_units#History_and_definition Planck units] article:
{| class="wikitable" style="margin:1em auto 1em auto; background:#fff;"
|+Table 1: Modern values for Planck's original choice of quantities
|-
! Name
! Expression
! Value ([[International System of Units|SI]] units)
|- style="text-align:left;"
| \frac{Planck time}{time apan}
| <math>t_\text{P} = \sqrt{\frac{\hbar G}{c^5}}</math>
| 5.391247(60)×10<sup>−44</sup> s
|-
| Planck length
| <math>l_\text{P} = \sqrt{\frac{\hbar G}{c^3}}</math>
| 1.616255(18)×10<sup>−35</sup> m
|-
| Planck mass
| <math>m_\text{P} = \sqrt{\frac{\hbar c}{G}}</math>
| 2.176434(24)×10<sup>-8</sup> kg
|-
| Planck temperature
| <math>T_\text{P} = \sqrt{\frac{\hbar c^5}{G k_\text{B}^2}}</math>
| 1.416784(16)×10<sup>32</sup> K
|}
Since c and G are normalized in the Bully system, this ensures that Bully units should have a simple relationship with Planck's units. As illustrated below, multiplying each SI value from Table 1 by 566.66, results in the corresponding Bully value multiplied by 10<sup>-30</sup>:
566.66 × t<sub>P</sub> = 566.66 × 5.391247(60)×10<sup>−44</sup> s
                        = 3055.004(34)×10<sup>−44</sup> s
                        = 30.55004(34)×10<sup>−30</sup> ps
                        = 1.00001(11)×10<sup>−30</sup> ta
566.66 × l<sub>P</sub> = 566.66 × 1.616255(18)×10<sup>−35</sup> m
                        = 915.867(10)×10<sup>−35</sup> m
                        = 9.15867(10)×10<sup>−30</sup> mm
                        = 1.00001(11)×10<sup>−30</sup> la
566.66 × m<sub>P</sub> = 566.66 × 2.176434(24)×10<sup>-8</sup> kg
                        = 1233.298(14)×10<sup>−8</sup> kg
                        = 12.33298(14)×10<sup>−30</sup> rg
                        = 1.00001(11)×10<sup>−30</sup> ma
SI prefixes will have the same meaning and conventions when used with apan variants as they have when used with standard SI units (see table in subsequent section for a list of SI prefixes). The "quecto" (symbol "q") metric prefix means 10<sup>-30</sup>. The relationship between Bully units and Planck's units can be summarized as:
566.66 × t<sub>P</sub> = 1.00001(11) qta
566.66 × l<sub>P</sub> = 1.00001(11) qla
566.66 × m<sub>P</sub> = 1.00001(11) qma
Planck units are understood to represent the smallest meaningful size of each quantity. For example, the Planck length is the smallest possible length because looking at small objects requires energy.  If one were to build a microscope powerful enough to see objects of Planck length or smaller, the microscope would use so much energy that a black hole would form.  In terms of Bully units, the "quecto" of each unit is 566.66 times larger than the absolute minimum size for that unit.
The Planck mass may seem unexpectedly large for a minimum mass value, but keep in mind that in this case the unit is for gravitational mass.  There obviously are well defined and detectable masses that are smaller than the Planck mass (for example the electron and proton masses), but the Planck mass represents the boundary between gravitational mass and quantum mass.  If an object has a mass larger than the Planck mass then gravitational effects will dominate.  If the mass is smaller than the Planck mass then quantum mechanical effects will dominate.
The ''''Bully Metric''' is an extremely efficient set of time and distance measurement units for representing earth's physical parameters. Bully units can efficiently represent the Earth's [https://en.wikipedia.org/wiki/Sidereal_year sidereal year] and [https://en.wikipedia.org/wiki/Tropical_year tropical year] to eight digits;  The Bully Metric can also efficiently represent four digit approximations for the [https://en.wikipedia.org/wiki/Earth_radius Earth's radius] (r ≈ [https://www.google.com/search?q=c+*+3.055+s+%2F+sqrt%282*10330%29 6371]), Schwarzschild radius (R), [https://en.wikipedia.org/wiki/Standard_gravitational_parameter standard gravitational parameter] (μ = MG ≈ [https://www.google.com/search?q=c%5E3+*+0.03055+s+%2F%282+*+1033000000%29 3.984e14]), and a typical [https://en.wikipedia.org/wiki/Gravity_of_Earth gravitational acceleration] on earth's surface (g ≈ [https://www.google.com/search?q=c+%2F+%2830550000+s%29 9.813] ).
<math display="block">{1 \, Sidereal \, Year} = {1.033 \, Eta} = {31,558,150 \, s} </math>
<math display="block"> {1 \, Tropical \, Year} = (1.033 - 0.00004) \, Eta - 2 \,s = 31,556,926 \, s </math>
<math display="block"> r_{earth} \approx \frac{ 1 \, Gla}{\sqrt{2 \times 1.033}} = 6371 \, km </math>
<math display="block"> R_{earth} \approx \frac{la}{1.033} \approx {8.866 \, mm} </math>
<math display="block"> {\mu}_{earth} \approx \frac{ 1 }{2 \times 1.033} \, \frac{la^{3}}{ta^{2}} \approx {398,400,000,000,000\, \frac{m^{3}}{s^2}} </math>
<math display="block">g_{earth} \approx 1 \frac{Ela}{Eta^{2}} \approx {9.813 \, \frac{m}{s^{2}}} </math>
= The Bully Constants =
There are a surprising number of physical constants that can be approximated using various algebraic combinations of the following four numbers [[The Bully Mnemonic|(click here to learn more)]]:
1.033
30.55
2
0.00004
== Sidereal year ==
The number of seconds in the Earth's [https://en.wikipedia.org/wiki/Sidereal_year sidereal year] can be approximated as:
<math display="block"> {1 \, Sidereal \, Year} = 1.033 \times 30.55 \, Ms = {31,558,150 \, s} </math>
== Tropical year ==
The number of seconds in the Earth's [https://en.wikipedia.org/wiki/Tropical_year tropical year] can be approximated as:
<math display="block"> {1 \, Tropical \, Year} = ((1.033 - 0.00004) \times 30.55 \, Ms) - 2 \,s = 31,556,926 \, s </math>
== Great year ==
The number of tropical years in a [https://en.wikipedia.org/wiki/Great_Year Great Year] can be approximated as:
<math display="block"> {1 \, Great \, Year} \approx ({\frac{1.033}{0.00004}}) \, {Tropical \, Years} = {25,825 \, Tropical \, Years} </math>
== Earth's radius (r) ==
An approximate relationship of the speed of light to the [https://en.wikipedia.org/wiki/Earth_radius Earth's radius (r)]:
<math display="block"> r_{earth} \approx \frac{c \times 30.55\,ms}{\sqrt{2 \times 1.033}} = 6371 \, km</math>
== Earth's Schwarzschild radius (R) ==
An approximate relationship of the speed of light to the Earth's Schwarzschild radius (R):
<math display="block"> R_{earth} = \frac{2 \times GM_{earth}}{c^{2}} \approx \frac{ c \times 30.55\,ps}{1.033} \approx {8.866 \, mm} </math>
== Earth's standard gravitational parameter (μ = MG) ==
An approximate relationship of the speed of light to the [https://en.wikipedia.org/wiki/Standard_gravitational_parameter Earth's standard gravitational parameter (μ = MG)]:
<math display="block"> {\mu}_{earth} = GM_{earth} \approx \frac{ c^{3} \times 30.55\,ps}{2 \times 1.033} \approx {398,400,000,000,000\, \frac{m^{3}}{s^2}} </math>
== Earth's gravity (g) ==
A typical [https://en.wikipedia.org/wiki/Gravity_of_Earth gravitational acceleration] on earth's surface can be approximated as:
<math display="block">g_{earth} = \frac{{\mu}_{earth}}{{r_{earth}}^{2}} \approx \frac{c}{30.55 Ms} \approx {9.813 \, \frac{m}{s^{2}}} </math>
= Definition of the apan =
The above approximations for earth's physical parameters can be further simplified by introducing new measurement units.  The '''apan''' will be defined with two variants. The '''time apan''' (symbol '''ta''') is by definition exactly 30.55 picoseconds.  The '''length apan''' (or light apan) (symbol '''la''') is by definition the distance light travels in vacuum in exactly 30.55 picoseconds.
SI prefixes will have the same meaning and conventions when used with the apan as the have when used with standard SI units (see table in subsequent section).  For example:
One million ta = 1,000,000 ta = 1 mega time apan = 1 Mta = 30.55 μs
One million la = 1,000,000 la = 1 mega light apan = 1 Mla = 9.1586595919 km
Approximations for earth's physical parameters can be written in terms of the apan as follows:
== Sidereal year ==
The number of seconds in the Earth's [https://en.wikipedia.org/wiki/Sidereal_year sidereal year] can be approximated as:
<math display="block">{1 \, Sidereal \, Year} = {1.033 \, Eta} = {31,558,150 \, s} </math>
== Tropical year ==
The number of seconds in the Earth's [https://en.wikipedia.org/wiki/Tropical_year tropical year] can be approximated as:
<math display="block"> {1 \, Tropical \, Year} = (1.033 - 0.00004) \, Eta - 2 \,s = 31,556,926 \, s </math>
== Earth's radius (r) ==
An apan based approximation of [https://en.wikipedia.org/wiki/Earth_radius Earth's radius (r)]:
<math display="block"> r_{earth} \approx \frac{ 1 \, Gla}{\sqrt{2 \times 1.033}} = 6371 \, km </math>
== Earth's Schwarzschild radius (R) ==
An apan based approximation of the Earth's Schwarzschild radius (R):
<math display="block"> R_{earth} \approx \frac{la}{1.033} \approx {8.866 \, mm} </math>
== Earth's standard gravitational parameter (μ = MG) ==
An apan based approximation of the [https://en.wikipedia.org/wiki/Standard_gravitational_parameter Earth's standard gravitational parameter (μ = MG)]:
<math display="block"> {\mu}_{earth} \approx \frac{ 1 \, \frac{la^{3}}{ta^{2}} }{2 \times 1.033} \approx {398,400,000,000,000\, \frac{m^{3}}{s^2}} </math>
== Earth's gravity (g) ==
A typical [https://en.wikipedia.org/wiki/Gravity_of_Earth gravitational acceleration] on earth's surface can be approximated as:
<math display="block">g_{earth} = \frac{{\mu}_{earth}}{{r_{earth}}^{2}} \approx 1 \frac{Ela}{Eta^{2}} \approx {9.813 \, \frac{m}{s^{2}}} </math>

Latest revision as of 19:06, 19 October 2024

  1. REDIRECT [Original research]
Development
Area
File:Vitruvian Distance.png
Five traditional units are accepted for use with the Buly system. Bully variants of the fathom, cubit, span, gallon, and stone, are defined below.
1 Bully Fathom = 200 kilopan (200,000 apan)
1 Bully Cubit = 50 kilopan (50,000 apan)
1 Bully Span = 25 kilopan (25,000 apan)
1 Bully Gallon = 5,000 cubed kilopan
1 Bully Stone = 500 Rn yta

Six base units are included in the Bully Metric system. Two variants of the apan are defined as spacetime units. Three variants of the nat are defined as transformation units. And the symbol "e" is used to represent elementary charge (the charge of a single electron).

The time apan (or timepan) (symbol ta) is by definition exactly 30.55 femtoseconds. The length apan (or lightpan or lengthpan) (symbol la) is by definition the distance light travels in vacuum in 30.55 femtoseconds.

The Bully Metric time unit
The Bully Metric length unit

The infonat (natural unit of entropy) (symbol En) is defined such that for an ideal gas in a given macrostate, the entropy of the gas divided by the natural logarithm of the number of real microstates would be equivalent to one infonat.

Table 1: Gravitational Mass
Body mass
Sun Template:Val Rn ta
Earth Template:Val Rn ta
Moon Template:Val Rn ta

The rapinat (natural unit of rapidity) (symbol Rn) is defined such that an object with a standard gravitational parameter equal to the speed of light in vacuum cubed multiplied by 30.55 femtoseconds, will have a gravitational mass of one rapinat timepan. The dwarf planet Pluto has a gravitational mass of roughly one rapinat timepan. Earth's moon has a gravitational mass of approximately six rapinat timepan. It would take roughly six Pluto sized objects smashed together to build something the size of the moon. A few example masses are shown in Table 1.

Table 2: Quantum Rest Energy
Particle rest energy
Neutron Template:Val An / ta
Proton Template:Val An / ta
Electron Template:Val An / ta
Neutrino < Template:Val An / ta
Graviton < Template:Val An / Zta

The actionat (natural unit of action) (symbol An), and elementary charge (symbol e), are defined such that if a Josephson Junction were exposed to microwave radiation of frequency 2 / 30.55 picoseconds (≈ 65.4664484 gigahertz), then the junction would form equidistant Shapiro steps with separation of 2π actionats per kilo-time-apan electron. Also,the quantum Hall effect will have resistance steps of multiples of 2π actionats per electron squared. A few example rest energies are listed in Table2.

ta = 30.55 femtoseconds (exact)

la = c × 30.55 femtoseconds (exact)
   = 9.1586595919 micrometers (exact)

En = 1.380649 x 10-23 joule / kelvin (exact)

Rn = (c3 / G) (exact)
   ≈ 4.0370 × 1035 kilogram / second (approximate)

An = 4 / (2π × KJ2 × RJ)  (exact)
   = 1.05457182 × 10-34 joule second (approximate)

e = 2 / (KJ × RJ) (exact)
  = 1.60217663 × 10-19 coulombs (approximate)

The above definitions ensure normalization of the speed of light (c), Newton's gravitational constant (G), the Boltzmann constant (kB), the reduced Planck constant (ħ), and the elementary charge (e):

(exact)

(exact)

(exact)

(exact)

(exact)

The Bohr Atomic Model using Bully Metric units

Planck units and the Bully Metric

Table 3 below was taken from the Wikipedia Planck units article:

Table 3: Modern values for Planck's original choice of quantities
Name Expression Value (SI units)
Planck time 5.391247(60)×10−44 s
Planck length 1.616255(18)×10−35 m
Planck mass 2.176434(24)×10-8 kg
Planck temperature 1.416784(16)×1032 K

Planck to Bully conversion constant

Since c, G, kB, and ħ are all normalized in the Bully system, this ensures that Bully units have a simple relationship with Planck's units. In fact, multiplying each value from Table 3 by 0.566660, results in the corresponding Bully value multiplied by 10-30:

0.566660 × tP = 1.00001(11) × 10-30 ta
0.566660 × lP = 1.00001(11) × 10-30 la
0.566660 × mP = 1.00001(11) × 10-30 Rn ta

Table 4 below uses algebraic substitution to illustrate that there is one unique multiplicative constant that converts between Planck and Bully values. When Planck energy is included in the table (see "Planck energy" row in Table 4), one finds that the Planck to Bully conversion factor for energy is the inverse of the mass, time, and length conversion factor.

Table 4: Planck's units relationship with Bully units
Name Expression
Planck time
Planck length
Planck mass
Planck energy
Planck temperature

The meaning of Planck units

The Planck length and time units are understood to represent the smallest meaningful size of each quantity. For example, the Planck length is the smallest meaningful length because looking at small objects through a microscope requires energy. If one were to build a microscope powerful enough to see objects at Planck length or smaller, the microscope would use so much energy that a black hole would form. In fact, the existence of objects on the Planck scale would cause a black hole.

The Planck mass of 2.176434(24)×10-8 kg is not a minimum value. In the case of mass, the Planck value is a crossover point. The Planck mass represents the boundary between gravitation and quantum mechanics. If an object has a mass larger than the Planck mass then gravitational effects will become more important. If the mass is smaller than the Planck mass then quantum mechanical effects will be more important.

Visible universe and the Bully Metric

Since Planck units represent the smallest meaningful length and time values, it seems appropriate to also consider the largest meaningful length and time value, and situate these within the Bully system. The universe is currently understood to be 13.7 billion years old, which is 14.15 × 1030 ta in Bully units. The radius of the visible universe is 46.508 billion light years, which is 48.04 × 1030 la in Bully units.

The apan prefix table

SI prefixes have the same meaning and conventions when used with apan variants as they have when used with standard SI units. See Table 5 below for the list of SI prefixes used with apan variants. Also shown in the table are the smallest (Planck scale) and largest (Visible Universe) values for each unit.

Table 5: The apan prefix table
Prefix Spacetime Symbols
Name Symbol Base 10 Time Length Charge
Maximum Value
(Observable Universe)
quetta Q 1030 Qta Qla Qe
ronna R 1027 Rta Rla Re
yotta Y 1024 Yta Yla Ye
zetta Z 1021 Zta Zla Ze
exa E 1018 Eta Ela Ee
peta P 1015 Pta Pla Pe
tera T 1012 Tta Tla Te
giga G 109 Gta Gla Ge
mega M 106 Mta Mla Me
kilo k 103 kta kla ke
100 ta la e
milli m 10−3 mta mla me
micro μ 10−6 μta μla μe
nano n 10−9 nta nla ne
pico p 10−12 pta pla pe
femto f 10−15 fta fla fe
atto a 10−18 ata ala ae
zepto z 10−21 zta zla ze
yocto y 10−24 yta yla ye
ronto r 10−27 rta rla re
quecto q 10−30 qta qla qe
Minimum value
(Planck Scale)

The Mass/Momentum/Energy prefix table

Mass, Momentum, and Energy are compound units in the Bully system. Table 6 below lists SI prefixes used with the rapinat for gravitational masses, and with the actionat for quantum mechanical masses. Also shown in the table is the Planck scale cross-over value where gravitational and quantum effects meet.

Table 6: The Mass/Momentum/Energy prefix table
Prefix Bully Metric Symbols
Name Symbol Base 10 Mass Momentum Energy
quetta Q 1030 Rn Qta Rn Qla Rn c Qla
Observable Universe Mass = 480 Rn Rta
ronna R 1027 Rn Rta Rn Rla Rn c Rla
yotta Y 1024 Rn Yta Rn Yla Rn c Yla
zetta Z 1021 Rn Zta Rn Zla Rn c Zla
exa E 1018 Rn Eta Rn Ela Rn c Ela
peta P 1015 Rn Pta Rn Pla Rn c Pla
tera T 1012 Rn Tta Rn Tla Rn c Tla
giga G 109 Rn Gta Rn Gla Rn c Gla
mega M 106 Rn Mta Rn Mla Rn c Mla
kilo k 103 Rn kta Rn kla Rn c kla
Earth Mass = 484 Rn ta
100 Rn ta Rn la Rn c la
milli m 10−3 Rn mta Rn mla Rn c mla
micro μ 10−6 Rn μta Rn μla Rn c μla
nano n 10−9 Rn nta Rn nla Rn c nla
pico p 10−12 Rn pta Rn pla Rn c pla
femto f 10−15 Rn fta Rn fla Rn c fla
atto a 10−18 Rn ata Rn ala Rn c ala
zepto z 10−21 Rn zta Rn zla Rn c zla
yocto y 10−24 Rn yta Rn yla Rn c yla
ronto r 10−27 Rn rta Rn rla Rn c rla
quecto q 10−30 Rn qta Rn qla Rn c qla
Crossover value
(Planck Scale)
(21.765 micro-grams)
quecto q 10−30 An / c qla An / qla An / qta
ronto r 10−27 An / c rla An / rla An / rta
yocto y 10−24 An / c yla An / yla An / yta
zepto z 10−21 An / c zla An / zla An / zta
atto a 10−18 An / c ala An / ala An / ata
femto f 10−15 An / c fla An / fla An / fta
pico p 10−12 An / c pla An / pla An / pta
nano n 10−9 An / c nla An / nla An / nta
micro μ 10−6 An / c μla An / μla An / μta
milli m 10−3 An / c mla An / mla An / mta
1.00 electronvolt = 46.414 An / ta
100 An / c la An / la An / ta
kilo k 103 An / c kla An / kla An / kta
mega M 106 An / c Mla An / Mla An / Mta
giga G 109 An / c Gla An / Gla An / Gta
tera T 1012 An / c Tla An / Tla An / Tta
peta P 1015 An / c Pla An / Pla An / Pta
exa E 1018 An / c Ela An / Ela An / Eta
zetta Z 1021 An / c Zla An / Zla An / Zta
yotta Y 1024 An / c Yla An / Yla An / Yta
ronna R 1027 An / c Rla An / Rla An / Rta
quetta Q 1030 An / c Qla An / Qla An / Qta