Bully Metric: Difference between revisions

From PhysWiki
No edit summary
No edit summary
Line 26: Line 26:
  | <math>t_\text{P} = \sqrt{\frac{\hbar G}{c^5}}</math>
  | <math>t_\text{P} = \sqrt{\frac{\hbar G}{c^5}}</math>
  | 5.391247(60)×10<sup>−44</sup> s
  | 5.391247(60)×10<sup>−44</sup> s
  | <math display="block">\frac{1.000012 qta}{566.66}</math>
  | <math display="block">\frac{1.000001(10) qta}{566.66}</math>
|-  
|-  
  | Planck length
  | Planck length

Revision as of 18:56, 28 September 2024

The 'Bully Metric is an extremely efficient set of time and distance measurement units for representing earth's physical parameters. Bully units can efficiently represent the Earth's sidereal year and tropical year to eight digits; The Bully Metric can also efficiently represent four digit approximations for the Earth's radius (r ≈ 6371), Schwarzschild radius (R), standard gravitational parameter (μ = MG ≈ 3.984e14), and a typical gravitational acceleration on earth's surface (g ≈ 9.813 ).


1SiderealYear=1.033Eta=31,558,150s

1TropicalYear=(1.0330.00004)Eta2s=31,556,926s

rearth1Gla2×1.033=6371km

Rearthla1.0338.866mm

μearth12×1.033la3ta2398,400,000,000,000m3s2

gearth1ElaEta29.813ms2


Table 1: Modern values for Planck's original choice of quantities
Name Expression Value (SI units) Value (Bully units)
Planck time tP=Gc5 5.391247(60)×10−44 s 1.000001(10)qta566.66
Planck length lP=Gc3 1.616255(18)×10−35 m
Planck mass mP=cG Template:Physconst
Planck temperature TP=c5GkB2 Template:Physconst


The Bully Constants

There are a surprising number of earth's physical constants that can be approximated using various algebraic combinations of the following four numbers (click here to learn more):

1.033
30.55
2
0.00004

Sidereal year

The number of seconds in the Earth's sidereal year can be approximated as:

1SiderealYear=1.033×30.55Ms=31,558,150s

Tropical year

The number of seconds in the Earth's tropical year can be approximated as:

1TropicalYear=((1.0330.00004)×30.55Ms)2s=31,556,926s

Great year

The number of tropical years in a Great Year can be approximated as:

1GreatYear(1.0330.00004)TropicalYears=25,825TropicalYears

Earth's radius (r)

An approximate relationship of the speed of light to the Earth's radius (r):

rearthc×30.55ms2×1.033=6371km

Earth's Schwarzschild radius (R)

An approximate relationship of the speed of light to the Earth's Schwarzschild radius (R):

Rearth=2×GMearthc2c×30.55ps1.0338.866mm

Earth's standard gravitational parameter (μ = MG)

An approximate relationship of the speed of light to the Earth's standard gravitational parameter (μ = MG):

μearth=GMearthc3×30.55ps2×1.033398,400,000,000,000m3s2

Earth's gravity (g)

A typical gravitational acceleration on earth's surface can be approximated as:

gearth=μearthrearth2c30.55Ms9.813ms2

Definition of the apan

The above approximations for earth's physical parameters can be further simplified by introducing new measurement units. The apan will be defined with two variants. The time apan (symbol ta) is by definition exactly 30.55 picoseconds. The length apan (or light apan) (symbol la) is by definition the distance light travels in vacuum in exactly 30.55 picoseconds.

SI prefixes will have the same meaning and conventions when used with the apan as the have when used with standard SI units (see table in subsequent section). For example:

One million ta = 1,000,000 ta = 1 mega time apan = 1 Mta = 30.55 μs
One million la = 1,000,000 la = 1 mega light apan = 1 Mla = 9.1586595919 km

Approximations for earth's physical parameters can be written in terms of the apan as follows:

Sidereal year

The number of seconds in the Earth's sidereal year can be approximated as:

1SiderealYear=1.033Eta=31,558,150s

Tropical year

The number of seconds in the Earth's tropical year can be approximated as:

1TropicalYear=(1.0330.00004)Eta2s=31,556,926s

Earth's radius (r)

An apan based approximation of Earth's radius (r):

rearth1Gla2×1.033=6371km

Earth's Schwarzschild radius (R)

An apan based approximation of the Earth's Schwarzschild radius (R):

Rearthla1.0338.866mm

Earth's standard gravitational parameter (μ = MG)

An apan based approximation of the Earth's standard gravitational parameter (μ = MG):

μearth1la3ta22×1.033398,400,000,000,000m3s2

Earth's gravity (g)

A typical gravitational acceleration on earth's surface can be approximated as:

gearth=μearthrearth21ElaEta29.813ms2

The apan prefix table

Prefix Base 10 Bully Metric SI Equivalent
Name Symbol Time Length Time Length
quetta Q 1030 Qta Qla 30.55 Es 9.1586595919 Rm
ronna R 1027 Rta Rla 30.55 Ps 9.1586595919 Ym
yotta Y 1024 Yta Yla 30.55 Ts 9.1586595919 Zm
zetta Z 1021 Zta Zla 30.55 Gs 9.1586595919 Em
exa E 1018 Eta Ela 30.55 Ms 9.1586595919 Pm
peta P 1015 Pta Pla 30.55 ks 9.1586595919 Tm
tera T 1012 Tta Tla 30.55 s 9.1586595919 Gm
giga G 109 Gta Gla 30.55 ms 9.1586595919 Mm
mega M 106 Mta Mla 30.55 μs 9.1586595919 km
kilo k 103 kta kla 30.55 ns 9.1586595919 m
100 ta la 30.55 ps 9.1586595919 mm
milli m 10−3 mta mla 30.55 fs 9.1586595919 μm
micro μ 10−6 μta μla 30.55 as 9.1586595919 nm
nano n 10−9 nta nla 30.55 zs 9.1586595919 pm
pico p 10−12 pta pla 30.55 ys 9.1586595919 fm
femto f 10−15 fta fla 30.55 rs 9.1586595919 am
atto a 10−18 ata ala 30.55 qs 9.1586595919 zm
zepto z 10−21 zta zla 30.55e-3 qs 9.1586595919 ym
yocto y 10−24 yta yla 30.55e-6 qs 9.1586595919 rm
ronto r 10−27 rta rla 30.55e-9 qs 9.1586595919 qm
quecto q 10−30 qta qla 30.55e-12 qs 9.1586595919e-3 qm