Bully Mnemonic Extension: Difference between revisions

From PhysWiki
(Created page with "Test")
 
No edit summary
Line 1: Line 1:
Test
[[File:North season.jpg|thumb|Tropical Year]]
 
 
The '''Bully Mnemonic''' is a technique for remembering the exact number of seconds that occur in Earth's [https://en.wikipedia.org/wiki/Sidereal_year sidereal year] and [https://en.wikipedia.org/wiki/Tropical_year tropical year], a good approximation of the Earth's [https://en.wikipedia.org/wiki/Great_Year Great Year], and a rough approximation of the Solar System's [https://en.wikipedia.org/wiki/Galactic_year galactic year].
 
 
The following relationships are encoded in the Bully Mnemonic:
 
<math display="block"> {1 \, Sidereal \, Year} = {31,558,150 \, Seconds} </math>
 
<math display="block"> {1 \, Tropical \, Year} = {31,556,926 \, Seconds} </math>
 
<math display="block"> 1 \, Great \, Year \approx 25,824 \, Sidereal \, Years \approx 25,825 \, Tropical \, Years </math>
 
<math display="block">{1 \, Galactic \, Year} \approx 213,417,800 \, Tropical \, Years </math>
 
 
= Bully Mnemonic Steps =
 
== Initial Definitions ==
 
=== Step 1 ===
 
The first step is to write down the first five digits:
 
<math display="block"> \begin{matrix} 1 & 2 & 3 & 4 & 5 \end{matrix}</math>
 
=== Step 2 ===
 
The second step is to select odd digits and intersperse them with zeros to form integers a) and b) as shown below:
(important to remember that the first integer ends with 33 followed by a 0, whereas the second integer ends with 55 with no trailing 0)
 
<math display="block"> \begin{matrix} {\color{Red} 1} & \scriptstyle\text{2} & {\color{Red} 3} & \scriptstyle\text{4} & {\color{Red} 5} \end{matrix} </math>
 
<math display="block"> a) \, {\color{Red} 1} 0  {\color{Red} 33}  0 </math>
<math display="block"> b) \, {\color{Red} 3} 0  {\color{Red} 55}</math>
 
=== Step 3 ===
 
The third step is to select even digits and define numbers c) and d) as shown below:
 
<math display="block"> \begin{matrix} \scriptstyle\text{1} & {\color{Red} 2} &  \scriptstyle\text{3} & {\color{Red} 4} & \scriptstyle\text{5} \end{matrix} </math>
 
<math display="block"> c) \, {\color{Red} 2} </math>
<math display="block"> d) \, 0. {\color{Red} 4} 0 </math>
 
== Sidereal & Tropical Years ==
 
=== Step 4 ===
 
Multiply integers a) and b) from Step 2 to get the total number of seconds in a sidereal year.
 
<math display="block"> {\color{Red} 1} 0 {\color{Red} 33} 0 \times {\color{Red} 3} 0 {\color{Red} 55}  = 31558150 = \frac{1 \, Sidereal \, Year}{1 \, Second} </math>
 
Using Long Multiplication:
        3055
×    10330
————————————
        0000
      9165
      9165
    0000
    3055
————————————
    31558150
 
=== Step 5 ===
 
The tropical year has a slightly shorter duration than the sidereal year. The approximate number of seconds in a tropical year is obtained by reducing integer a) by amount d), and then multiplying by b).
 
<math display="block"> ({\color{Red} 1} 0  {\color{Red} 33} 0 - 0. {\color{Red} 4} 0)  \times {\color{Red} 3} 0  {\color{Red} 55}  = 31556928 \approx \frac{1 \, Tropical \, Year}{1 \, Second} </math>
 
The exact number of seconds in a tropical year is obtained by reducing integer a) by amount d), multiplying by b), and then reducing by c).
 
<math display="block"> (({\color{Red} 1} 0  {\color{Red} 33} 0 - 0. {\color{Red} 4} 0)  \times {\color{Red} 3} 0  {\color{Red} 55}) - {\color{Red} 2} = 31556926 = \frac{1 \, Tropical \, Year}{1 \, Second} </math>
 
Using the Distributive Property of Multiplication:
 
(10330 - 0.40) × 3055 = (10330 × 3055) - (0.40 × 3055)
                      =    31558150    -    1222
                      =    31556928
 
== Great Years ==
 
=== Step 6 ===
 
The Great Year is, by definition, a least common multiple of the sidereal year and the tropical year.  From steps 4 and 5 above, we have that the ratio of tropical years to sidereal years is:
 
<math display="block">{\frac{1 \, Tropical \, Year}{1 \, Sidereal \, Year}} \approx {\frac{(10330 - 0.40) \times 3055 \, sec}{10330 \times 3055 \, sec}} </math>
 
Divide top and bottom by amount d) and use the Distributive Property of Multiplication to obtain:
 
<math display="block"> {\frac{1 \, Tropical \, Year}{1 \, Sidereal \, Year}} \approx {\frac{(\frac{10330}{0.40} - \frac{0.40}{0.40}) \times 3055 \, sec}{(\frac{10330}{0.40}) \times 3055 \, sec}} </math>
 
From whence:
 
<math display="block"> {\frac{1 \, Tropical \, Year}{1 \, Sidereal \, Year}} \approx {\frac{(25825 - 1) \times 3055 \, sec}{(25825) \times 3055 \, sec}} </math>
 
Consequently:
 
<math display="block"> {\frac{25825 \, Tropical \, Year}{25824 \, Sidereal \, Year}} \approx {\frac{25825 \times (25824) \times 3055 \, sec}{25824 \times (25825) \times 3055 \, sec}} = 1 </math>
 
Finally:
 
<math display="block"> 1 \, Great \, Year \approx 25825 \, Tropical \, Years \approx 25824 \, Sidereal \, Years </math>
 
In terms of Long Multiplication; 0.40, 25825, and 10330 are related as follows:
        0.40
×  25825
————————————
        2.00
      08.0
      320
    200
    080
————————————
    10330.00
 
== Galactic Years ==
 
=== Step 7 ===
 
Multiply integer c) by the square of integer a) to get a rough approximate galactic year (the number of tropical years required for the Solar System to orbit once around the galactic center).
 
<math display="block">{\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33}  0}^{2} = 213417800 \approx \frac{ 1 \, Galactic \, Year}{ 1 \, Tropical \, Year} </math>
 
Using Long Multiplication:
        10330
×      10330
——————————————
        00000
      30990
      30990
    00000
    10330
——————————————
    106708900
 
And finally:
106708900 × 2 = 213417800

Revision as of 17:16, 16 August 2024

File:North season.jpg
Tropical Year


The Bully Mnemonic is a technique for remembering the exact number of seconds that occur in Earth's sidereal year and tropical year, a good approximation of the Earth's Great Year, and a rough approximation of the Solar System's galactic year.


The following relationships are encoded in the Bully Mnemonic:


Bully Mnemonic Steps

Initial Definitions

Step 1

The first step is to write down the first five digits:

Step 2

The second step is to select odd digits and intersperse them with zeros to form integers a) and b) as shown below: (important to remember that the first integer ends with 33 followed by a 0, whereas the second integer ends with 55 with no trailing 0)

Step 3

The third step is to select even digits and define numbers c) and d) as shown below:

Sidereal & Tropical Years

Step 4

Multiply integers a) and b) from Step 2 to get the total number of seconds in a sidereal year.

Using Long Multiplication:

       3055
×     10330
————————————
       0000
      9165
     9165
    0000
   3055
————————————
   31558150

Step 5

The tropical year has a slightly shorter duration than the sidereal year. The approximate number of seconds in a tropical year is obtained by reducing integer a) by amount d), and then multiplying by b).

The exact number of seconds in a tropical year is obtained by reducing integer a) by amount d), multiplying by b), and then reducing by c).

Using the Distributive Property of Multiplication:

(10330 - 0.40) × 3055 = (10330 × 3055) - (0.40 × 3055)
                      =    31558150    -     1222
                      =    31556928

Great Years

Step 6

The Great Year is, by definition, a least common multiple of the sidereal year and the tropical year. From steps 4 and 5 above, we have that the ratio of tropical years to sidereal years is:

Divide top and bottom by amount d) and use the Distributive Property of Multiplication to obtain:

From whence:

Consequently:

Finally:

In terms of Long Multiplication; 0.40, 25825, and 10330 are related as follows:

       0.40
×  25825
————————————
       2.00
      08.0
     320
    200
   080
————————————
   10330.00

Galactic Years

Step 7

Multiply integer c) by the square of integer a) to get a rough approximate galactic year (the number of tropical years required for the Solar System to orbit once around the galactic center).

Using Long Multiplication:

       10330
×      10330
——————————————
       00000
      30990
     30990
    00000
   10330
——————————————
   106708900

And finally:

106708900 × 2 = 213417800