The Bully Mnemonic: Difference between revisions

From PhysWiki
No edit summary
No edit summary
Line 22: Line 22:
<math display="block"> {\mu}_{earth} = GM_{earth} \approx {10^{-10}} \times c^{3} \times \frac{{\color{Red} 3} 0  {\color{Red} 55}\,s}{{\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33}  0}} \approx {398,400,000,000,000\, \frac{m^{3}}{s^2}} </math>
<math display="block"> {\mu}_{earth} = GM_{earth} \approx {10^{-10}} \times c^{3} \times \frac{{\color{Red} 3} 0  {\color{Red} 55}\,s}{{\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33}  0}} \approx {398,400,000,000,000\, \frac{m^{3}}{s^2}} </math>


<math display="block"> g_{earth} = \frac{{\mu}_{earth}}{{r_{earth}}^{2}} \approx {10^{-4}} \times c \times \frac{1}{ {\color{Red} 3} 0  {\color{Red} 55} \, s} \approx {8.866 \, mm} </math>
<math display="block"> g_{earth} = \frac{{\mu}_{earth}}{{r_{earth}}^{2}} \approx {10^{-4}} \times c \times \frac{1}{ {\color{Red} 3} 0  {\color{Red} 55} \, s} \approx {9.813 \, mm} </math>





Revision as of 19:22, 25 September 2024


Bully Mnemonic Topics:


The Bully Mnemonic is a technique for remembering the exact number of seconds that occur in Earth's sidereal year and tropical year; a good approximation of the Earth's Great Year; and a rough approximation of the Solar System's galactic year.

The following relationships are encoded in the Bully Mnemonic:

1SiderealYear=31,558,150Seconds

1TropicalYear=31,556,926Seconds

1GreatYear25,824SiderealYears25,825TropicalYears

1GalacticYear213,417,800TropicalYears


The few additional approximations are closely related to values used in the Bully Mnemonic. These include an approximate relationship of the speed of light to the Earth's radius (r), Schwarzschild radius (R), standard gravitational parameter (μ = MG), and a typical gravitational acceleration on earth's surface (g).

rearth103×c×3055s2×10330=6371km

Rearth=2×GMearthc21010×c×3055s103308.866mm

μearth=GMearth1010×c3×3055s2×10330398,400,000,000,000m3s2

gearth=μearthrearth2104×c×13055s9.813mm


Bully Mnemonic Steps

Initial Definitions

Step 1

The first step is to write down the first five digits:

12345

Step 2

The second step is to select odd digits and intersperse them with zeros to form integers a) and b) as shown below: (important to remember that the first integer ends with 33 followed by a 0, whereas the second integer ends with 55 with no trailing 0)

12345

a)10330 b)3055

Step 3

The third step is to select even digits and define numbers c) and d) as shown below:

12345

c)2 d)0.40

Sidereal & Tropical Years

Step 4

Multiply integers a) and b) from Step 2 to get the total number of seconds in a sidereal year.

10330×3055=31558150=1SiderealYear1Second

Using Long Multiplication:

       3055
×     10330
————————————
   3055
    0000
     9165
      9165
+      0000
————————————
   31558150

Step 5

The tropical year has a slightly shorter duration than the sidereal year. The approximate number of seconds in a tropical year is obtained by reducing integer a) by amount d), and then multiplying by b).

(103300.40)×3055=315569281TropicalYear1Second

The exact number of seconds in a tropical year is obtained by reducing integer a) by amount d), multiplying by b), and then reducing by c).

((103300.40)×3055)2=31556926=1TropicalYear1Second

Using the Distributive Property of Multiplication:

(10330 - 0.40) × 3055 = (10330 × 3055) - (0.40 × 3055)
                            =    31558150    -     1222
                            =    31556928

Great Years

Step 6

The Great Year is, by definition, a least common multiple of the sidereal year and the tropical year. From steps 4 and 5 above, we have that the ratio of tropical years to sidereal years is:

1TropicalYear1SiderealYear(103300.40)×3055sec10330×3055sec

Divide top and bottom by amount d) and use the Distributive Property of Multiplication to obtain:

1TropicalYear1SiderealYear(103300.400.400.40)×3055sec(103300.40)×3055sec

From whence:

1TropicalYear1SiderealYear(258251)×3055sec(25825)×3055sec

Consequently:

25825TropicalYear25824SiderealYear25825×(25824)×3055sec25824×(25825)×3055sec=1

Finally:

1GreatYear25825TropicalYears25824SiderealYears

In terms of Long Multiplication; 0.40, 25825, and 10330 are related as follows:

       0.40
×  25825
————————————
   080
    200
     320
      08.0
+      2.00
————————————
   10330.00

Galactic Years

Step 7

Multiply integer c) by the square of integer a) to get a rough approximate galactic year (the number of tropical years required for the Solar System to orbit once around the galactic center).

2×103302=2134178001GalacticYear1TropicalYear

Using Long Multiplication:

       10330
×      10330
——————————————
   10330
    00000
     30990
      30990
+      00000
——————————————
   106708900

And finally:

106708900 × 2 = 213417800

Additional Relationships

Step 8

Divide integer b) (in seconds) by the product of integer c) and integer a). The resulting value will be roughly ten orders of magnitude bigger than earth's standard gravitational parameter (μ = MG) divided by the speed of light (c) cubed.

1010×μc3=0.147936611505s

3055s2×10330=0.147870280736s

Step 9

A more accurate approximation is obtained by reducing a) by 4.6316922:

30552×(103304.6316922)=0.147936611505s

Step 10

The value of an object's Schwarzschild radius can obtained from the standard gravitational parameter by multiplying by two and dividing by the speed of light squared. Comparing with steps 8 and 9 above, one obtains:

1010×RSc=0.295873223010s

3055(103304.6316922)=0.295873223010s