The Bully Mnemonic: Difference between revisions

From PhysWiki
Line 82: Line 82:
<math display="block"> \frac{ 1 \, Galactic \, Year}{1 \, Second} \approx {\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33} 0}^{3} \times {\color{Red} 3} 0 {\color{Red} 55} </math>
<math display="block"> \frac{ 1 \, Galactic \, Year}{1 \, Second} \approx {\color{Red} 2} \times {{\color{Red} 1} 0  {\color{Red} 33} 0}^{3} \times {\color{Red} 3} 0 {\color{Red} 55} </math>


<math display="block"> \frac{ 1 \, Galactic \, Year}{1 \, Second} = (2 \times  {0.40} \times {10330}) \cdot (\frac{10330}{0.40}) \cdot (({10330} - {0.40}) \times {3055}) = (8264) \cdot (25825) \cdot (31556928) </math>
<math display="block"> \frac{ 1 \, Galactic \, Year}{1 \, Second} \approx (2 \times  {0.40} \times {10330}) \cdot (\frac{10330}{0.40}) \cdot (({10330} - {0.40}) \times {3055}) = (8264) \cdot (25825) \cdot (31556928) </math>


<math display="block"> = (2 \times  {0.40} \times {10330}) \cdot (\frac{10330}{0.40} - 1) \cdot ({10330} \times {3055}) = (8264) \cdot (25824)  \cdot (31558150) </math>
<math display="block"> = (2 \times  {0.40} \times {10330}) \cdot (\frac{10330}{0.40} - 1) \cdot ({10330} \times {3055}) = (8264) \cdot (25824)  \cdot (31558150) </math>

Revision as of 21:25, 3 August 2024

The Bully Mnemonic is a technique for remembering the exact number of seconds that occur in Earth's sidereal year, good approximations of the relationships that exist between Earth's sidereal, tropical, and Great Year, and a rough approximation of the Solar System's galactic year.

Bully Mnemonic Steps

Initial Definitions

Step 1

The first step is to write down the first five digits:

12345

Step 2

The second step is to select odd digits and intersperse them with zeros into integers a) and b) as shown below: (important to remember that the first integer ends with an extra 0, whereas the second integer ends with 5)

12345

a)10330 b)3055

Step 3

The third step is to select even digits and define numbers c) and d) as shown below:

12345

c)2 d)0.40

Sidereal & Tropical Years

Step 4

Multiply integers a) and b) from Step 2 to get the total number of seconds in a sidereal year.

10330×3055=31558150=1SiderealYear1Second

Step 5

The tropical year has a slightly shorter duration than the sidereal year. Reduce integer a) by amount d), and multiply by b) from Step 2 to get the total number of seconds in a tropical year.

(103300.40)×3055=315569281TropicalYear1Second

Great Years

Step 6

The Great Year is, by definition, a least common multiple of the sidereal year and the tropical year.

1GreatYear103300.40TropicalYears=25825TropicalYears

1GreatYear103300.040.40SiderealYears=25824SiderealYears

Proof:

103300.40TropicalYears=103300.40×(103300.40)×3055seconds

103300.040.40SiderealYears=103300.040.40×10330×3055seconds

Galactic Years

Step 7

Multiply integer c) by the square of integer a) to get a rough approximate number of tropical years required for the Solar System to orbit around the galactic center.

2×103302=2134178001GalacticYear1TropicalYear

2×10330×(103300.40)=2134095361GalacticYear1SiderealYear

Step 8

This step is an immediate consequence of steps 6 and 7 above:

2×103302×(103300.40)×3055=6.7348101×10151GalacticYear1Second

Summary

The Bully Mnemonic can be represented as follows:

1GalacticYear1Second2×103303×3055

1GalacticYear1Second(2×0.40×10330)(103300.40)((103300.40)×3055)=(8264)(25825)(31556928)

=(2×0.40×10330)(103300.401)(10330×3055)=(8264)(25824)(31558150)

The following relationships are encoded in the Bully Mnemonic:

1GalacticYear8264GreatYears

1GreatYear25824SiderealYears25825TropicalYears

1TropicalYear31556928Seconds

1SiderealYear=31558150Seconds

Julian Years & Gregorian Years

There are exactly 86400 seconds in a day:

1Day=24×60×60seconds=86400seconds